Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Xu Xiaoyan,Dou Yanguang,Zhang Yong, et al. Occurrence mechanism of redox sensitive elements in columnar sediments in South Central Okinawa Trough and their environmental implications[J]. Haiyang Xuebao,2022, 44(10):63–79 doi: 10.12284/hyxb2022186
Citation: Xu Xiaoyan,Dou Yanguang,Zhang Yong, et al. Occurrence mechanism of redox sensitive elements in columnar sediments in South Central Okinawa Trough and their environmental implications[J]. Haiyang Xuebao,2022, 44(10):63–79 doi: 10.12284/hyxb2022186

Occurrence mechanism of redox sensitive elements in columnar sediments in South Central Okinawa Trough and their environmental implications

doi: 10.12284/hyxb2022186
  • Received Date: 2022-02-09
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-07-12
  • Publish Date: 2022-10-01
  • Changes in the content of redox sensitive elements (RSE) in sediments are good surrogate indicators for the redox environment of the overlying water. The RSE in the columnar sediments under complex environmental backgrounds through the grain size, total organic carbon and total nitrogen and its isotopes contents, and redox sensitive elements contents of the two columnar sediments (30 cm) in South Central Okinawa Trough are explored in this paper. And to explore the occurrence mechanism and environmental indication significance. The study found that in addition to the depletion of Cr in the columnar sediments, other RSEs showed different degrees of enrichment. The “grain size effect” has little effect on the RSE content of columnar sediments in the Okinawa Trough; analysis and judgment show that seawater surface productivity is the main factor affecting the redox environment of sediments, and RSE is achieved through the adsorption or desorption of Mn (hydrogen) oxides enrichment and loss. Indicators such as δCe, V/(V+Ni), Ni/Co and V/Cr indicate that the sediment is in an oxic-dysoxic water environment. The Mn element in the sediment diffuses upward in the form of Mn2+ through reduction, and is oxidized and enriched by oxygen-containing interstitial water at 25−30 cm to form a manganese peak. The 0−25 cm columnar sediment is in an oxic water column, and 25−30 cm is in a dysoxic water column.
  • loading
  • [1]
    林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72−80. doi: 10.3969/j.issn.1007-2802.2008.01.012

    Lin Zhijia, Chen Duofu, Liu Qian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72−80. doi: 10.3969/j.issn.1007-2802.2008.01.012
    [2]
    张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95−106. doi: 10.19509/j.cnki.dzkq.2017.0412

    Zhang Mingliang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95−106. doi: 10.19509/j.cnki.dzkq.2017.0412
    [3]
    Algeo T J, Owens J D, Morford J L, et al. New developments in geochemical proxies for paleoceanographic research[J]. Geochimica et Cosmochimica Acta, 2020, 287: 1−7. doi: 10.1016/j.gca.2020.07.010
    [4]
    Isozaki Y. Permo-triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235−238. doi: 10.1126/science.276.5310.235
    [5]
    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3/4): 396−405.
    [6]
    解兴伟, 袁华茂, 宋金明, 等. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 2019, 65(3): 671−688. doi: 10.16509/j.georeview.2019.03.013

    Xie Xingwei, Yuan Huamao, Song Jinming, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of water environment[J]. Geological Review, 2019, 65(3): 671−688. doi: 10.16509/j.georeview.2019.03.013
    [7]
    Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735−1750.
    [8]
    Wakeham S G. Organic biogeochemistry in the oxygen-deficient ocean: a review[J]. Organic Geochemistry, 2020, 149: 104096. doi: 10.1016/j.orggeochem.2020.104096
    [9]
    吴伊婧, 范代读, 印萍, 等. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567−580. doi: 10.11867/j.issn.1001-8166.2016.06.0567.

    Wu Yijing, Fan Daidu, Yin Ping, et al. Research advances in sedimentary records of coastal bottom-water hypoxia[J]. Advances in Earth Science, 2016, 31(6): 567−580. doi: 10.11867/j.issn.1001-8166.2016.06.0567.
    [10]
    赵亚青, 周亮, 赵宁, 等. 近三百年来长江口泥质区沉积环境变化及与低氧关系的初步分析[J]. 海洋通报, 2021, 40(1): 70−83.

    Zhao Yaqing, Zhou Liang, Zhao Ning, et al. The response of sedimentary records in the mud area of the Changjiang Estuary to hypoxia in the last 300 years[J]. Marine Science Bulletin, 2021, 40(1): 70−83.
    [11]
    Cartapanis O, Tachikawa K, Bard E. Northeastern Pacific oxygen minimum zone variability over the past 70 kyr: impact of biological production and oceanic ventilation[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4208.
    [12]
    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926−929. doi: 10.1126/science.1156401
    [13]
    Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585−619. doi: 10.5194/bg-7-585-2010
    [14]
    韦刚健, 李献华, 刘颖, 等. 沉积物成岩蚀变过程中的Mn、Cd和Mo元素活动特征: 以ODP 1148站钻孔沉积物记录为例[J]. 地球化学, 2005, 34(2): 129−135. doi: 10.3321/j.issn:0379-1726.2005.02.005

    Wei Gangjian, Li Xianhua, Liu Ying, et al. Transfer patterns of Mn, Cd and Mo in sediments during early diagenesis: evidences from sediment cores at ODP site 1148[J]. Geochimica, 2005, 34(2): 129−135. doi: 10.3321/j.issn:0379-1726.2005.02.005
    [15]
    Adegoke A K, Abdullah W H, Hakimi M H, et al. Trace elements geochemistry of Kerogen in Upper Cretaceous sediments, Chad (Bornu) Basin, northeastern Nigeria: origin and paleo-redox conditions[J]. Journal of African Earth Sciences, 2014, 100: 675−683. doi: 10.1016/j.jafrearsci.2014.08.014
    [16]
    Li Li, Dang D H, Wang Xiaojing, et al. Atypical diagenesis and geochemistry of redox-sensitive elements in hydrothermal sediments of the southern Okinawa Trough[J]. Frontiers in Marine Science, 2021, 8: 722599. doi: 10.3389/fmars.2021.722599
    [17]
    Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65−78.
    [18]
    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289−318.
    [19]
    Pi Daohui, Jiang Shaoyong, Luo Li, et al. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling Region, SW China: evidence from redox-sensitive trace element geochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 125−131. doi: 10.1016/j.palaeo.2013.09.029
    [20]
    Baioumy H, Lehmann B. Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: evidence for the late Cretaceous Tethys anoxia[J]. Journal of African Earth Sciences, 2017, 133: 7−14. doi: 10.1016/j.jafrearsci.2017.05.006
    [21]
    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211−225.
    [22]
    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation-applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324−325: 46−58. doi: 10.1016/j.chemgeo.2011.09.009
    [23]
    Lyons T W, Anbar A D, Severmann S, et al. Tracking euxinia in the ancient ocean: a multiproxy perspective and proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 507−534. doi: 10.1146/annurev.earth.36.031207.124233
    [24]
    Dale A W, Meyers S R, Aguilera D R, et al. Controls on organic carbon and molybdenum accumulation in Cretaceous marine sediments from the Cenomanian-Turonian interval including oceanic anoxic event 2[J]. Chemical Geology, 2012, 324−325: 28−45. doi: 10.1016/j.chemgeo.2011.10.004
    [25]
    Nameroff T J, Balistrieri L S, Murray J W. Suboxic trace metal geochemistry in the eastern tropical North Pacific[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1139−1158. doi: 10.1016/S0016-7037(01)00843-2
    [26]
    Pattan J N, Parthiban G, Amonkar A. Productivity controls on the redox variation in the southeastern Arabian Sea sediments during the past 18 kyr[J]. Quaternary International, 2019, 523: 1−9. doi: 10.1016/j.quaint.2019.05.034
    [27]
    Acharya S S, Panigrahi M K, Gupta A K, et al. Response of trace metal redox proxies in continental shelf environment: the eastern Arabian Sea scenario[J]. Continental Shelf Research, 2015, 106: 70−84. doi: 10.1016/j.csr.2015.07.008
    [28]
    李铁刚, 常凤鸣. 冲绳海槽古海洋学[M]. 北京: 海洋出版社, 2009: 259.

    Li Tiegang, Chang Fengming. Paleoceanography in the Okinawa Through[M]. Beijing: China Ocean Press, 2009: 259.
    [29]
    邹亮, 窦衍光, 陈晓辉, 等. 冲绳海槽中南部不同环境表层沉积物质来源[J]. 海洋地质与第四纪地质, 2021, 41(1): 115−124.

    Zou Liang, Dou Yanguang, Chen Xiaohui, et al. Provenance analysis for surface sediments in different depositional environments of the middle-south Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 115−124.
    [30]
    李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18 ka以来的底栖有孔虫与底层水演化[J]. 中国科学(D辑):地球科学, 2005, 48(6): 805−814. doi: 10.1360/03yd0222

    Li Tiegang, Xiang Rong, Sun Rongtao, et al. Benthic foraminifera and bottom water evolution in the middle-southern Okinawa Trough during the last 18 ka[J]. Science in China (Series D): Earth Sciences, 2005, 48(6): 805−814. doi: 10.1360/03yd0222
    [31]
    Dou Yanguang, Yang Shouye, Li Chao, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum[J]. Progress in Oceanography, 2015, 135: 77−90. doi: 10.1016/j.pocean.2015.04.007
    [32]
    许淑梅. 长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义[D]. 青岛: 中国海洋大学, 2005.

    Xu Shumei. The distribution and environmental significance of redox sensitive elements in the hypoxia zone of the Changjiang Estuary and its contiguous area[D]. Qingdao: Ocean University of China, 2005.
    [33]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
    [34]
    Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography and Paleoclimatology, 1992, 7(2): 163−181.
    [35]
    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169−200.
    [36]
    王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 535.

    Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Geochemistry of Rare Earth Elements[M]. Beijing: Science Press, 1989: 535.
    [37]
    Myers K J, Wignall P B. Understanding Jurassic organic-rich mudrocks-new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge clay of Dorset and the jet rock of yorkshire[M]//Leggett J K, Zuffa G G. Marine Clastic Sedimentology: Concepts and Case Studies. Dordrecht: Springer, 1987: 172−189.
    [38]
    Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151−158.
    [39]
    Xu Fangjian, Dou Yanguang, Li Jun, et al. Low-latitude climate control on sea-surface temperatures recorded in the southern Okinawa Trough during the last 13.3 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 210−217. doi: 10.1016/j.palaeo.2017.10.034
    [40]
    Zhao Jingtao, Li Jun, Cai Feng, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio current[J]. Progress in Oceanography, 2015, 138: 238−248. doi: 10.1016/j.pocean.2015.06.008
    [41]
    Chang Yuanpin, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 389−401. doi: 10.3319/TAO.2008.19.4.389(IMAGES)
    [42]
    Sun Youbin, Oppo D W, Xiang Rong, et al. Last deglaciation in the Okinawa Trough: subtropical Northwest Pacific link to northern Hemisphere and tropical climate[J]. Paleoceanography and Paleoclimatology, 2005, 20(4): PA4005.
    [43]
    刘磊, 许兰芳, 管红香, 等. 冲绳海槽中部8.2 ka以来GDGTs组成及温度重建[J]. 热带海洋学报, 2020, 39(6): 77−92.

    Liu Lei, Xu Lanfang, Guan Hongxiang, et al. The source of glycerol dibiphytanyl glycerol tetraethers and temperature reconstruction since 8.2 ka in the central Okinawa Trough[J]. Journal of Tropical Oceanography, 2020, 39(6): 77−92.
    [44]
    Zheng Xufeng, Li Anchun, Wan Shiming, et al. ITCZ and ENSO pacing on east Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410−4429. doi: 10.1002/2013JC009603
    [45]
    王玥铭, 窦衍光, 李军, 等. 16 ka以来冲绳海槽中南部沉积物物源演化及其对古气候的响应[J]. 沉积学报, 2018, 36(6): 1157−1168.

    Wang Yueming, Dou Yanguang, Li Jun, et al. Sediment provenance change and its response to paleochimate change in the middle Okinawa Trough since 16 ka[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1157−1168.
    [46]
    杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25−37.

    Yang Baoju, Wu Yonghua, Liu Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25−37.
    [47]
    张丹丹, 曾志刚, 殷学博. 冲绳海槽中部沉积物物质来源和沉积环境分析[J]. 海洋学报, 2017, 39(7): 92−101.

    Zhang Dandan, Zeng Zhigang, Yin Xuebo. Analysis on sediment provenance and environmental changes in the middle Okinawa Trough[J]. Haiyang Xuebao, 2017, 39(7): 92−101.
    [48]
    窦衍光, 陈晓辉, 李军, 等. 东海外陆架−陆坡−冲绳海槽不同沉积单元底质沉积物成因及物源分析[J]. 海洋地质与第四纪地质, 2018, 38(4): 21−31.

    Dou Yanguang, Chen Xiaohui, Li Jun, et al. Origin and provenance of the surficial sediments in the subenvironments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 21−31.
    [49]
    赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983, 18(4): 307−314.

    Zhao Yiyang. Some geochemical patterns of shelf sediments of the China seas[J]. Chinese Journal of Geology, 1983, 18(4): 307−314.
    [50]
    程俊, 黄怡, 王淑红, 等. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2): 90−103.

    Cheng Jun, Huang Yi, Wang Shuhong, et al. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90−103.
    [51]
    蒋富清, 李安春. 冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J]. 沉积学报, 2002, 20(4): 680−686. doi: 10.3969/j.issn.1000-0550.2002.04.024

    Jiang Fuqing, Li Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the South Okinawa Trough[J]. Acta Sedimentologica Sinica, 2002, 20(4): 680−686. doi: 10.3969/j.issn.1000-0550.2002.04.024
    [52]
    Brumsack H J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344−361.
    [53]
    Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio current through the Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822
    [54]
    Kao S J, Roberts A P, Hsu S C, et al. Monsoon forcing, hydrodynamics of the Kuroshio current, and tectonic effects on sedimentary carbon and sulfur cycling in the Okinawa Trough since 90 ka[J]. Geophysical Research Letters, 2006, 33(5): L05610.
    [55]
    胡邦琦. 中国东部陆架海泥质沉积区的物源识别及其环境记录[D]. 青岛: 中国海洋大学, 2010.

    Hu Bangqi. Sediment provenance discrimination and paleoenvironment records in the mud area of East China seas since the holocene[D]. Qingdao: Ocean University of China, 2010.
    [56]
    王佳泽, 李安春, 黄杰. 17000年以来冲绳海槽中部沉积物物源演化及其古环境记录[J]. 海洋地质与第四纪地质, 2013, 33(6): 105−114.

    Wang Jiaze, Li Anchun, Huang Jie. Sediment provenance and paleoenvironment records of the central Okinawa Trough for the last 17000 years[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 105−114.
    [57]
    Liu J P, Milliman J D, Gao Shu, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4): 45−67.
    [58]
    朱纯, 潘建明, 卢冰, 等. 长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境[J]. 海洋学研究, 2005, 23(3): 36−46. doi: 10.3969/j.issn.1001-909X.2005.03.006

    Zhu Chun, Pan Jianming, Lu Bing, et al. Source indication and accumulative effect of sedimentary organic matter in the Changjiang Estuary, the old Huanghe River subaqueous delta and the East China Sea shelf[J]. Journal of Marine Sciences, 2005, 23(3): 36−46. doi: 10.3969/j.issn.1001-909X.2005.03.006
    [59]
    窦衍光, 杨守业, 唐珉, 等. 冲绳海槽中部28 ka以来陆源物质输入和古环境演化的生源组分记录[J]. 第四纪研究, 2011, 31(2): 236−243. doi: 10.3969/j.issn.1001-7410.2011.02.05

    Dou Yanguang, Yang Shouye, Tang Min, et al. Using biogenic components to decipher the terrigenous input and paleoenvironmental changes over the last 28 ka in the middle Okinawa Trough[J]. Quaternary Sciences, 2011, 31(2): 236−243. doi: 10.3969/j.issn.1001-7410.2011.02.05
    [60]
    Brummer G J A, van Eijden A J M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates[J]. Marine Micropaleontology, 1992, 19(1/2): 99−117.
    [61]
    Vanderzwaan G J, Jorissen F J , Zachariasse W J. Approaches to Paleoproductivity Reconstructions[J]. Marine Micropaleontology, 1992(1/2): R5−R6.
    [62]
    韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2): 76−88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    Wei Hengye. Productivity and redox proxies of palaeo-oceans: an overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76−88. doi: 10.3969/j.issn.1009-3850.2012.02.012
    [63]
    黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2): 163−170. doi: 10.3321/j.issn:1005-2321.2005.02.018

    Huang Yongjian, Wang Chengshan, Wang Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2): 163−170. doi: 10.3321/j.issn:1005-2321.2005.02.018
    [64]
    邹亮, 韦刚健, 李军. 海洋沉积物中生物成因Ba的海洋生产力研究[J]. 第四纪研究, 2011, 31(2): 307−315. doi: 10.3969/j.issn.1001-7410.2011.02.13

    Zou Liang, Wei Gangjian, Li Jun. Review on ocean productivity by using biogenic Ba in marine sediments[J]. Quaternary Sciences, 2011, 31(2): 307−315. doi: 10.3969/j.issn.1001-7410.2011.02.13
    [65]
    Huo Suxia, Xiu Chun, Zhang Xu, et al. Geochemical characteristics of biogenic barium in sediments of the Antarctica Ross Sea and their indication for paleoproductivity[J]. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 241−248.
    [66]
    Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980.
    [67]
    吴雪停, 刘丽华, 吴能友, 等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿, 2015, 31(12): 17−26. doi: 10.16028/j.1009-2722.2015.12003

    Wu Xueting, Liu Lihua, Wu Nengyou, et al. Geochemistry of early diagenesis in marine sediments: research progress[J]. Marine Geology Frontiers, 2015, 31(12): 17−26. doi: 10.16028/j.1009-2722.2015.12003
    [68]
    Löwemark L, Steinke S, Wang C H, et al. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 138−153.
    [69]
    邹建军, 石学法, 李乃胜, 等. 长江口氧化还原敏感元素的早期成岩过程[J]. 地球科学:中国地质大学学报, 2010, 35(1): 31−42. doi: 10.3799/dqkx.2010.004

    Zou Jianjun, Shi Xuefa, Li Naisheng, et al. Early diagenetic processes of redox sensitive elements in Yangtze Estuary[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(1): 31−42. doi: 10.3799/dqkx.2010.004
    [70]
    Wu Yijing, Fan Daidu, Wang Deli, et al. Increasing hypoxia in the Changjiang Estuary during the last three decades deciphered from sedimentary redox-sensitive elements[J]. Marine Geology, 2020, 419: 106044. doi: 10.1016/j.margeo.2019.106044
    [71]
    Laluraj C M, Nair S M. Geochemical index of trace metals in the surficial sediments from the western continental shelf of India, Arabian Sea[J]. Environmental Geochemistry and Health, 2006, 28(6): 509−518. doi: 10.1007/s10653-005-8619-7
    [72]
    Cheng Jun, Huang Yi, Wang Shuhong, et al. Transect variations and controlling factors of redox-sensitive trace element compositions of surface sediments in the South China Sea[J]. Continental Shelf Research, 2019, 190: 103978. doi: 10.1016/j.csr.2019.103978
    [73]
    Berrang P G, Grill E V. The effect of manganese oxide scavenging on molybdenum in Saanich inlet, British Columbia[J]. Marine Chemistry, 1974, 2(2): 125−148. doi: 10.1016/0304-4203(74)90033-4
    [74]
    解兴伟, 袁华茂, 宋金明, 等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报, 2020, 42(2): 30−43.

    Xie Xingwei, Yuan Huamao, Song Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea[J]. Haiyang Xuebao, 2020, 42(2): 30−43.
    [75]
    王家凯, 李铁刚, 熊志方, 等. 南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 112−121.

    Wang Jiakai, Li Tiegang, Xiong Zhifang, et al. Sedimentary gochemical characteristics of the redox-sensitive elements in Ross Sea, Antarctica: implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112−121.
    [76]
    史向明. 近海沉积物−水界面的耗氧和氧化还原敏感元素(Fe、Mn)的迁移[D]. 厦门: 厦门大学, 2019.

    Shi Xiangming. Benthic oxygen consumption and the transport of redox sensitive elements (Fe and Mn) across the sediment-water interface in coastal seas[D]. Xiamen: Xiamen University, 2019.
    [77]
    McKee B A, DeMaster D J, Nittrouer C A. Uranium geochemistry on the Amazon Shelf: evidence for uranium release from bottom sediments[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2779−2786. doi: 10.1016/0016-7037(87)90157-8
    [78]
    McManus J, Berelson W M, Klinkhammer G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 95−108. doi: 10.1016/j.gca.2004.06.023
    [79]
    Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233−2242. doi: 10.1016/S0016-7037(99)00433-0
    [80]
    林玉雯. 华南埃迪卡拉纪晚期缺氧页岩中微量元素的空间分布及其古环境意义[D]. 昆明: 云南大学, 2020.

    Lin Yuwen. Spatial distribution of trace metals in anoxic shale and its implication for paleoenvironment during the late Ediacaran, South China[D]. Kunming: Yunnan University, 2020.
    [81]
    任艺君. 长江口低氧区沉积物−海水界面氧化还原敏感元素的响应机制研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.

    Ren Yijun. Study on the response mechanism of redox-sensitive elements at the sediment-seawater interface in the hypoxic zone of the Yangtze Estuary[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
    [82]
    Bahk J J, Chough S K, Jeong K S, et al. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea (Sea of Japan)[J]. Global and Planetary Change, 2001, 28(1/4): 241−253.
    [83]
    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
    [84]
    陈炳辉, 韦慧晓, 黄志国, 等. 表生地质体的Ce异常及其影响因素综述[J]. 稀土, 2007, 28(4): 79−83. doi: 10.3969/j.issn.1004-0277.2007.04.019

    Chen Binghui, Wei Huixiao, Huang Zhiguo, et al. Cerium anomalies in supergene geological bodies and its effecting factors[J]. Chinese Rare Earths, 2007, 28(4): 79−83. doi: 10.3969/j.issn.1004-0277.2007.04.019
    [85]
    任江波. 海水稀土的Ce负异常特征及其启示[J]. 地质论评, 2015, 61(S1): 36−37.

    Ren Jiangbo. Characteristics of Ce negative anomaly of rare earths in seawater and its enlightenment[J]. Geological Review, 2015, 61(S1): 36−37.
    [86]
    吴明清, 欧阳自远. 铈异常——一个寻迹古海洋氧化还原条件变化的化学示踪剂[J]. 科学通报, 1992(3): 242−244.

    Wu Mingqing, Ouyang Ziyuan. Cerium anomaly—a chemical tracer for tracing the changes of redox conditions in ancient oceans[J]. Chinese Science Bulletin, 1992(3): 242−244.
    [87]
    Wignall P B, Myers K J. Interpreting benthic oxygen levels in mudrocks: a new approach[J]. Geology, 1988, 16(5): 452−455. doi: 10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2
    [88]
    许淑梅, 张晓东, 翟世奎, 等. 海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义[J]. 海洋地质动态, 2007, 23(3): 11−18. doi: 10.3969/j.issn.1009-2722.2007.03.002

    Xu Shumei, Zhang Xiaodong, Zhai Shikui, et al. The geochemistry of redox sensitive trace elements and their environmental implications[J]. Marine Geology Letters, 2007, 23(3): 11−18. doi: 10.3969/j.issn.1009-2722.2007.03.002
    [89]
    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111−129.
    [90]
    Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1−24. doi: 10.1144/GSL.SP.1991.058.01.01
    [91]
    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U. S. A[J]. Chemical Geology, 1992, 99(1/3): 65−82.
    [92]
    杨季华, 罗重光, 杜胜江, 等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报, 2020, 40(6): 723−733.

    Yang Jihua, Luo Chongguang, Du Shengjiang, et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica, 2020, 40(6): 723−733.
    [93]
    Algeo T J, Morford J, Cruse A. New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 306−307: 160−164. doi: 10.1016/j.chemgeo.2012.03.009
    [94]
    周炼, 苏洁, 黄俊华, 等. 判识缺氧事件的地球化学新标志——钼同位素[J]. 中国科学: 地球科学, 2011, 54(7): 1024−1033. doi: 10.1007/s11430-011-4188-z

    Zhou Lian, Su Jie, Huang Junhua, et al. A new paleoenvironmental index for anoxic events—Mo isotopes in black shales from Upper Yangtze marine sediments[J]. Science China: Earth Sciences, 2011, 54(7): 1024−1033. doi: 10.1007/s11430-011-4188-z
    [95]
    Rozanov A G, Volkov I I. Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn[J]. Geochemistry International, 2009, 47(10): 1004−1020. doi: 10.1134/S001670290910005X
    [96]
    Lu Bo, Li Tiegang, Yu Xinke, et al. Redox conditions in sediments and during sedimentation in the Ontong Java Plateau, west equatorial Pacific[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(6): 1309−1324. doi: 10.1007/s00343-011-1027-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (356) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return