Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas[J]. Haiyang Xuebao,2022, 44(12):19–30 doi: 10.12284/hyxb2022159
Citation: Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas[J]. Haiyang Xuebao,2022, 44(12):19–30 doi: 10.12284/hyxb2022159

Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

doi: 10.12284/hyxb2022159
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-07-22
  • Available Online: 2022-09-21
  • Publish Date: 2023-01-17
  • In this study, the harmonic constants of the 5 global vertical displacement loading tide models FES2014, EOT11a, GOT4.10c, GOT4.8 and NAO.99b are validated evaluated to the observed data of 21 GPS stations in Bohai Sea, Yellow Sea, East China Sea and surrounding areas. The results show that the accuracy of the M2 constituents of FES2014 and EOT11a models are relatively high, S2 constituents of NAO.99b and EOT11a models are relatively high, K1 constituents of EOT11a and FES2014 models are relatively high, O1 constituents of EOT11a and GOT4.8 models are relatively high, N2 constituents of EOT11a and FES2014 models are relatively high, K2 constituents of NAO.99b and FES2014 models are relatively high, P1 constituents of EOT11a and GOT4.8 models are relatively high, Q1 constituents of FES2014 and EOT11a models are relatively high. The distribution features of the eight vertical displacement loading tides in Bohai Sea, Yellow Sea, East China Sea and surrounding areas.
  • [1]
    Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25173−25194. doi: 10.1029/97JC00445
    [2]
    Seifi F, Deng Xiaoli, Andersen O B. Assessment of the accuracy of recent empirical and assimilated tidal models for the great barrier reef, Australia, using satellite and coastal data[J]. Remote Sensing, 2019, 11(10): 1211. doi: 10.3390/rs11101211
    [3]
    Fang Guohong, Xu Xiaoqing, Wei Zexun, et al. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas[J]. Science China Earth Sciences, 2013, 56(1): 63−70. doi: 10.1007/s11430-012-4518-9
    [4]
    徐晓庆, 魏泽勋, 滕飞, 等. 南海及邻近海峡垂向位移负荷潮和自吸−负荷潮[J]. 海洋学报, 2022, 44(7): 44−51.

    Xu Xiaoqing, Wei Zexun, Teng Fei, et al. Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits[J]. Haiyang Xuebao, 2022, 44(7): 44−51.
    [5]
    Fu L L, Cazenave A. Satellite altimetry and earth sciences: a handbook of techniques and applications[R]. San Diego: Academic Press, 2001: 1−463.
    [6]
    Visser P N A M, Sneeuw N, Reubelt T, et al. Space-borne gravimetric satellite constellations and ocean tides: aliasing effects[J]. Geophysical Journal International, 2010, 181(2): 789−805.
    [7]
    Iliffe J C, Ziebart M K, Turner J F, et al. Accuracy of vertical datum surfaces in coastal and offshore zones[J]. Survey Review, 2013, 45(331): 254−262. doi: 10.1179/1752270613Y.0000000040
    [8]
    Keysers J H, Quadros N D, Collier P A. Vertical datum transformations across the Australian littoral zone[J]. Journal of Coastal Research, 2015, 31(1): 119−128. doi: 10.2112/JCOASTRES-D-12-00228.1
    [9]
    Ito T, Okubo M, Sagiya T. High resolution mapping of Earth tide response based on GPS data in Japan[J]. Journal of Geodynamics, 2009, 48(3/5): 253−259.
    [10]
    Khan S A, Tscherning C C. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska[J]. Geophysical Research Letters, 2001, 28(11): 2249−2252. doi: 10.1029/2000GL011890
    [11]
    King M A, Penna N T, Clarke P J, et al. Validation of ocean tide models around Antarctica using onshore GPS and gravity data[J]. Journal of Geophysical Research, 2005, 110(B8): B08401.
    [12]
    Vergnolle M, Bouin M N, Morel L, et al. GPS estimates of ocean tide loading in NW-France: determination of ocean tide loading constituents and comparison with a recent ocean tide model[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 173(2): 444−458.
    [13]
    Yeh T K, Hwang C, Huang Jiufu, et al. Vertical displacement due to ocean tidal loading around Taiwan based on GPS observations[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22(4): 373−382. doi: 10.3319/TAO.2011.01.27.01(T)
    [14]
    Yuan Linguo, Chao B F, Ding Xiaoli, et al. The tidal displacement field at Earth’s surface determined using global GPS observations[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2618−2632. doi: 10.1002/jgrb.50159
    [15]
    Lyard F H, Allain D J, Cancet M, et al. FES2014 global ocean Tide Atlas: design and performance[J]. Ocean Science, 2020, 17(3): 615−649.
    [16]
    Savcenko R, Bosch W. EOT11A-empirical ocean tide model from multi-mission satellite altimetry[R]. Munich, Germany: Deutsches Geodätisches Forschungsinstitut, 2012: 49.
    [17]
    Ray R D. Precise comparisons of bottom-pressure and Altimetric Ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4570−4584. doi: 10.1002/jgrc.20336
    [18]
    Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567−581. doi: 10.1023/A:1011157212596
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 76.9 %META: 76.9 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.8 %其他: 2.8 %其他: 2.2 %其他: 2.2 %Alexandria: 0.4 %Alexandria: 0.4 %China: 0.4 %China: 0.4 %[]: 0.2 %[]: 0.2 %上海: 1.0 %上海: 1.0 %东莞: 0.4 %东莞: 0.4 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %北京: 2.4 %北京: 2.4 %北方邦: 0.1 %北方邦: 0.1 %南京: 0.6 %南京: 0.6 %南本德: 0.4 %南本德: 0.4 %南通: 0.1 %南通: 0.1 %台州: 0.2 %台州: 0.2 %吉林: 0.1 %吉林: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.4 %宣城: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.9 %广州: 0.9 %张家口: 3.5 %张家口: 3.5 %扬州: 0.2 %扬州: 0.2 %文昌: 0.1 %文昌: 0.1 %新乡: 0.2 %新乡: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %杭州: 3.9 %杭州: 3.9 %桂林: 0.1 %桂林: 0.1 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.2 %沧州: 0.2 %海口: 0.7 %海口: 0.7 %淄博: 0.2 %淄博: 0.2 %深圳: 0.1 %深圳: 0.1 %温尼伯: 0.5 %温尼伯: 0.5 %温州: 0.1 %温州: 0.1 %漯河: 0.2 %漯河: 0.2 %白银: 0.2 %白银: 0.2 %石嘴山: 0.2 %石嘴山: 0.2 %米纳斯吉拉斯州: 0.4 %米纳斯吉拉斯州: 0.4 %绍兴: 0.1 %绍兴: 0.1 %舟山: 0.6 %舟山: 0.6 %芒廷维尤: 49.9 %芒廷维尤: 49.9 %西宁: 12.5 %西宁: 12.5 %西安: 0.1 %西安: 0.1 %运城: 0.7 %运城: 0.7 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %长沙: 0.2 %长沙: 0.2 %青岛: 8.3 %青岛: 8.3 %马拉开波: 0.1 %马拉开波: 0.1 %其他其他AlexandriaChina[]上海东莞伊利诺伊州北京北方邦南京南本德南通台州吉林哥伦布嘉兴天津宜春宣城常德广州张家口扬州文昌新乡无锡昆明杭州桂林武汉沈阳沧州海口淄博深圳温尼伯温州漯河白银石嘴山米纳斯吉拉斯州绍兴舟山芒廷维尤西宁西安运城邯郸郑州长沙青岛马拉开波

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (629) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return