Citation: | Cui Miao,Li Yujie,Yang Yongchun, et al. Gene cloning of IGF-2 gene and differential expression of IGF-1/2 during embryonic development in Acanthopagrus latus[J]. Haiyang Xuebao,2022, 44(10):152–162 doi: 10.12284/hyxb2022158 |
[1] |
Wood A W, Duan Cunming, Bern H A. Insulin-like growth factor signaling in fish[J]. International Review of Cytology, 2005, 243: 215−285.
|
[2] |
Loir M, Le Gac F. Insulin-like growth factor-I and -II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes[J]. Biology of Reproduction, 1994, 51(6): 1154−1163. doi: 10.1095/biolreprod51.6.1154
|
[3] |
Zou Shuming, Kamei H, Modi Z, et al. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development[J]. PLoS One, 2009, 4(9): e7026. doi: 10.1371/journal.pone.0007026
|
[4] |
Tse M C L, Vong Q P, Cheng C H K, et al. PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2002, 1575(1/3): 63−74.
|
[5] |
Fukenstein B, Shemer R, Amuly R, et al. Nucleotide sequence of the promoter region of Sparus aurata insulin-like growth factor I gene and expression of IGF-I in eggs and embryos[J]. Molecular Marine Biology and Biotechnology, 1996, 5(1): 43−51.
|
[6] |
White Y A R, Kyle J T, Wood A W. Targeted gene knockdown in zebrafish reveals distinct intraembryonic functions for insulin-like growth factor II signaling[J]. Endocrinology, 2009, 150(9): 4366−4375. doi: 10.1210/en.2009-0356
|
[7] |
苏锦祥. 鱼类学与海水鱼类养殖[M]. 2版. 北京: 中国农业出版社, 2000: 160-220.
Su Jinxiang. Ichthyology and Marine Fish Culture[M]. 2nd ed. Beijing: China Agriculture Press, 2000: 160−220.
|
[8] |
麦贤杰, 黄伟健, 叶富良, 等. 海水鱼类繁殖生物学和人工繁育[M]. 北京: 海洋出版社, 2005: 199-225.
Mai Xianjie, Huang Weijian, Ye Fuliang, et al. Reproductive Biology and Artificial Breeding of Marine Fish[M]. Beijing: China Ocean Press, 2005: 199−225.
|
[9] |
Wang S B, Lau K Y, Liu K M, et al. Reproductive characteristics of the hermaphroditic yellowfin seabream Acanthopagrus latus in the waters off western Taiwan[J]. Aquaculture Research, 2020, 51(12): 5015−5028. doi: 10.1111/are.14839
|
[10] |
洪万树, 张其永, 郑建峰, 等. 港养黄鳍鲷性腺发育和性转变研究[J]. 台湾海峡, 1991, 10(3): 221−228.
Hong Wanshu, Zhang Qiyong, Zheng Jianfeng, et al. Studies on gonadal development and sex inversion of yellowfin seabream (Acanthopagrus latus)[J]. Journal of Oceanography in Taiwan Strait, 1991, 10(3): 221−228.
|
[11] |
郑运通, 马荣和, 许波涛, 等. 黄鳍鲷人工繁殖与育苗技术的研究[J]. 海洋渔业, 1986(5): 205−208.
Zheng Yuntong, Ma Ronghe, Xu Botao, et al. Study on artificial propagation and seedling technology of yellowfin bream (Acanthopagrus latus)[J]. Marine Fisheries, 1986(5): 205−208.
|
[12] |
郑运通, 马荣和, 许波涛, 等. 黄鳍鲷的胚胎和仔稚幼鱼的形态发育观察[J]. 水产科技情报, 1986(4): 1−3.
Zheng Yuntong, Ma Ronghe, Xu Botao, et al. Morphological development of embryos and larvae of yellowfin bream (Acanthopagrus latus)[J]. Fisheries Science and Technology Information, 1986(4): 1−3.
|
[13] |
Leu M Y, Chou Y H. Induced spawning and larval rearing of captive yellowfin porgy, Acanthopagrus latus (Houttuyn)[J]. Aquaculture, 1996, 143(2): 155−166. doi: 10.1016/0044-8486(96)01272-0
|
[14] |
Li Shizhu, Lin Genmei, Fang Wenyu, et al. Gonadal transcriptome analysis of sex-related genes in the protandrous yellowfin seabream (Acanthopagrus latus)[J]. Frontiers in Genetics, 2020, 11: 709. doi: 10.3389/fgene.2020.00709
|
[15] |
Zhou Ying, Liu Haiyang, Wang Xinhua, et al. QTL fine mapping for sex determination region in bighead carp (Hypophthalmichthys nobilis) and comparison with silver carp (Hypophthalmichthys molitrix)[J]. Marine Biotechnology, 2020, 22(1): 41−53. doi: 10.1007/s10126-019-09929-3
|
[16] |
Zhu Kecheng, Zhang Nan, Liu Baosuo, et al. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal[J]. Genomics, 2021, 113(4): 1617−1627. doi: 10.1016/j.ygeno.2021.04.017
|
[17] |
石和荣, 张为民, 刘晓春, 等. 半胱胺盐酸盐和 LHRH-A 对黄鳍鲷生长激素分泌的影响[J]. 海洋学报, 2005, 27(3): 147−153.
Shi Herong, Zhang Weimin, Liu Xiaochun, et al. Effects of cysteamine hydrochloride and luteinizing hormone-releasing hormone analog on growth hormone secretion in yellowfin porgy[J]. Haiyang Xuebao, 2005, 27(3): 147−153.
|
[18] |
石和荣, 张勇, 张为民, 等. 半胱胺盐酸盐和LHRH-A对黄鳍鲷IGF-I基因表达和生长的影响[J]. 动物学报, 2005, 51(1): 108−116. doi: 10.3969/j.issn.1674-5507.2005.01.016
Shi Herong, Zhang Yong, Zhang Weimin, et al. Effect of cysteamine hydrochloride and luteininzing hormone-releasing hormone analog on the growth and the expression of IGF-I mRNA in the yellowfin porgy Sparus latus[J]. Acta Zoologica Sinica, 2005, 51(1): 108−116. doi: 10.3969/j.issn.1674-5507.2005.01.016
|
[19] |
张殿昌, 江世贵. 黄鳍鲷生长激素cDNA的分子克隆和序列分析[J]. 湛江海洋大学学报, 2002, 22(4): 62−65.
Zhan Dianchang, Jiang Shigui. Molecular cloning and sequence analysis of growth hormone cDNA from Sparus latus[J]. Journal of Zhanjiang Ocean University, 2002, 22(4): 62−65.
|
[20] |
马细兰, 冷婷婷, 刘启智, 等. 黄鳍鲷(Sparus latus)两种生长激素受体的cDNA克隆及组织表达分析[J]. 海洋与湖沼, 2011, 42(6): 830−838. doi: 10.11693/hyhz201106013013
Ma Xilan, Leng Tingting, Liu Qizhi, et al. cDNAs cloning and tissues expression of two growth hormone receptors in yellowfin bream Sparus latus[J]. Oceanologia et Limnologia Sinica, 2011, 42(6): 830−838. doi: 10.11693/hyhz201106013013
|
[21] |
刘鉴毅, 李琪, 孙艳秋, 等. 多纹钱蝶鱼胚胎发育及胚后发育观察[J]. 中国水产科学, 2021, 28(8): 978−987.
Liu Jianyi, Li Qi, Sun Yanqiu, et al. Embryonic and post-embryonic development of Selenotoca multifasciata[J]. Journal of Fishery Sciences of China, 2021, 28(8): 978−987.
|
[22] |
杨慧荣, 王庆, 李水生, 等. 类胰岛素生长因子(IGFs)在斜带石斑鱼胚胎及卵巢的表达[J]. 中山大学学报(自然科学版), 2019, 58(5): 94−103.
Yang Huirong, Wang Qing, Li Shuisheng, et al. Expression analysis of insulin-like growth factors’ (IGFs) in embryo and oocyte of Epinephelus coioides[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(5): 94−103.
|
[23] |
Aslan O, Hamill R M, Davey G, et al. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle[J]. Molecular Biology Reports, 2012, 39(4): 4101−4110. doi: 10.1007/s11033-011-1192-5
|
[24] |
Yuan Yongming, Hong Yunhan. Medaka insulin-like growth factor-2 supports self-renewal of the embryonic stem cell line and blastomeres in vitro[J]. Scientific Reports, 2017, 7(1): 78. doi: 10.1038/s41598-017-00094-y
|
[25] |
林权卓, 沈卓坤, 杨宪宽, 等. 双棘黄姑鱼IGF2基因克隆及其在卵巢发育中的作用研究[J]. 广东农业科学, 2015, 42(3): 119−124, 130. doi: 10.3969/j.issn.1004-874X.2015.03.026
Lin Quanzhuo, Shen Zhuokun, Yang Xiankuan, et al. IGF2 gene cloning and its function during the development of ovarian cycle in Protonibea diacantus[J]. Guangdong Agricultural Sciences, 2015, 42(3): 119−124, 130. doi: 10.3969/j.issn.1004-874X.2015.03.026
|
[26] |
王丁科, 阎萍, 梁春年, 等. 胰岛素样生长因子2研究进展[J]. 动物医学进展, 2008, 29(7): 67−70. doi: 10.3969/j.issn.1007-5038.2008.07.017
Wang Dingke, Yan Ping, Liang Chunnian, et al. Progress on insulin-like growth factor 2[J]. Progress in Veterinary Medicine, 2008, 29(7): 67−70. doi: 10.3969/j.issn.1007-5038.2008.07.017
|
[27] |
陈军平, 沈方方, 武慧慧, 等. 我国鱼类胚胎发育研究进展[J]. 江苏农业科学, 2021, 49(17): 45−52.
Chen Junping, Shen Fangfang, Wu Huihui, et al. Research progress of China’s fish embryonic development[J]. Jiangsu Agricultural Sciences, 2021, 49(17): 45−52.
|
[28] |
辛俭, 薛利建, 毛国民, 等. 条石鲷的胚胎发育观察[J]. 浙江海洋学院学报(自然科学版), 2005, 24(1): 31−36.
Xin Jian, Xue Lijian, Mao Guomin, et al. Study on the embryonic development of Oplegnathidae fasciatus[J]. Journal of Zhejiang Ocean University (Natural Science), 2005, 24(1): 31−36.
|
[29] |
官曙光, 刘洪军, 李祥东, 等. 黑棘鲷胚胎发育过程及特殊结构观察[J]. 海洋科学, 2011, 35(9): 68−72.
Guan Shuguang, Liu Hongjun, Li Xiangdong, et al. Observation of embryonic development of Acanthopagrus schlegelii[J]. Marine Sciences, 2011, 35(9): 68−72.
|
[30] |
王彦怀, 陶秉春, 梁伟光, 等. 金头鲷胚胎发育的初步观察[J]. 海洋水产研究, 2006, 27(6): 14−18.
Wang Yanhuai, Tao Bingchun, Liang Weiguang, et al. Preliminary studies on embryo development of Sparus aurata[J]. Marine Fisheries Research, 2006, 27(6): 14−18.
|
[31] |
邝杰华, 陈刚, 马骞, 等. 军曹鱼的胚胎发育及仔稚鱼形态观察[J]. 水产学报, 2021, 45(11): 1814−1824.
Kuang Jiehua, Chen Gang, Ma Qian, et al. Embryonic development and morphological characteristics of larvae and juveniles of cobia (Rachycentron canadum)[J]. Journal of Fisheries of China, 2021, 45(11): 1814−1824.
|
[32] |
周玲, 翁文明, 李金亮, 等. 鞍带石斑鱼胚胎发育及仔鱼形态发育、饵料转变的观察研究[J]. 中国农学通报, 2010, 26(1): 293−302.
Zhou Ling, Weng Wenming, Li Jinliang, et al. Studies on embryonic development, morphological development and feed changeover of Epinephelus lanceolatus larva[J]. Chinese Agricultural Science Bulletin, 2010, 26(1): 293−302.
|
[33] |
黄贤克, 单乐州, 闫茂仓, 等. 黄姑鱼胚胎发育及其与温度和盐度的关系[J]. 海洋科学, 2017, 41(7): 44−50. doi: 10.11759/hykx20160920003
Huang Xianke, Shan Lezhou, Yan Maocang, et al. Embryonic development of Nibea albiflora and the effects of temperature and salinity on embryogenesis[J]. Marine Sciences, 2017, 41(7): 44−50. doi: 10.11759/hykx20160920003
|
[34] |
Yang S G, Ji S C, Lim S G, et al. Management of sexual maturation and natural spawning of captive-reared yellowtail kingfish, Seriola lalandi, in an indoor rearing tank[J]. Development & Reproduction, 2016, 20(2): 141−147.
|
[35] |
张克伟, 陈华谱, 江东能, 等. 金钱鱼IGF-1和IGF-2的克隆及其在胚胎发育过程的表达[J]. 广东海洋大学学报, 2018, 38(2): 7−14. doi: 10.3969/j.issn.1673-9159.2018.02.002
Zhang Kewei, Chen Huapu, Jiang Dongneng, et al. Insulin-like growth factors 1 and 2 in spotted scat (Scatophagus argus): molecular cloning and differential expression during embryonic development[J]. Journal of Guangdong Ocean University, 2018, 38(2): 7−14. doi: 10.3969/j.issn.1673-9159.2018.02.002
|
[36] |
Perrot V, Moiseeva E B, Gozes Y, et al. Ontogeny of the insulin-like growth factor system (IGF-I, IGF-II, and IGF-1R) in gilthead seabream (Sparus aurata): expression and cellular localization[J]. General and Comparative Endocrinology, 1999, 116(3): 445−460. doi: 10.1006/gcen.1999.7337
|
[37] |
Greene M W, Chen T T. Quantitation of IGF-I, IGF-II, and multiple insulin receptor family member messenger RNAs during embryonic development in rainbow trout[J]. Molecular Reproduction and Development, 1999, 54(4): 348−361. doi: 10.1002/(SICI)1098-2795(199912)54:4<348::AID-MRD5>3.0.CO;2-N
|