Citation: | Chen Zhi,Ma Chunlai,Ye Le, et al. Differences of eDNA metabarcoding fragments in relative fish species resolution[J]. Haiyang Xuebao,2022, 44(8):51–65 doi: 10.12284/hyxb2022150 |
[1] |
姜维, 赵虎, 邓捷, 等. 环境DNA分析技术—一种水生生物调查新方法[J]. 水生态学杂志, 2016, 37(5): 1−7.
Jiang Wei, Zhao Hu, Deng Jie, et al. Detection of aquatic species using environmental DNA[J]. Journal of Hydroecology, 2016, 37(5): 1−7.
|
[2] |
陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15): 4573−4582.
Chen Lian, Wu Lin, Liu Yan, et al. Application of environmental DNA metabarcoding in ecology[J]. Acta Ecologica Sinica, 2016, 36(15): 4573−4582.
|
[3] |
Zhang Shan, Zhao Jindong, Yao Meng. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods in Ecology and Evolution, 2020, 11(12): 1609−1625. doi: 10.1111/2041-210X.13485
|
[4] |
Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society Open Science, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
|
[5] |
Vences M, Lyra M L, Perl R G B, et al. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene[J]. Conservation Genetics Resources, 2016, 8(3): 323−327. doi: 10.1007/s12686-016-0550-y
|
[6] |
Balasingham K D, Walter R P, Mandrak N E, et al. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries[J]. Molecular Ecology, 2018, 27(1): 112−127. doi: 10.1111/mec.14395
|
[7] |
陈治. 浙江近海鱼类多样性eDNA调查方法的建立与应用[D]. 青岛: 中国海洋大学, 2019.
Chen Zhi. Establishment and application of eDNA method for fish diversity survey around Zhejiang coastal area[D]. Qingdao: Ocean University of China, 2019.
|
[8] |
Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 2016, 25(4): 929−942. doi: 10.1111/mec.13428
|
[9] |
程馨雨, 陶捐, 武瑞东, 等. 淡水鱼类功能生态学研究进展[J]. 生态学报, 2019, 39(3): 810−822.
Cheng Xinyu, Tao Juan, Wu Ruidong, et al. Functional ecology of freshwater fish: research progress and prospects[J]. Acta Ecologica Sinica, 2019, 39(3): 810−822.
|
[10] |
李高俊, 顾党恩, 蔡杏伟, 等. 海南岛“两江一河”淡水土著鱼类的种类组成与分布现状[J]. 淡水渔业, 2020, 50(6): 15−22. doi: 10.3969/j.issn.1000-6907.2020.06.003
Li Gaojun, Gu Dang’en, Cai Xingwei, et al. The species composition and distribution of indigenous freshwater fishes of three main rivers in Hainan Island[J]. Freshwater Fisheries, 2020, 50(6): 15−22. doi: 10.3969/j.issn.1000-6907.2020.06.003
|
[11] |
申志新, 李高俊, 蔡杏伟, 等. 海南省淡水野生鱼类多样性演变及保护建议[J]. 中国水产, 2018, 11(6): 56−60.
Shen Zhixin, Li Gaojun, Cai Xingwei, et al. The evolution and protection of freshwater fish species in Hainan Province[J]. China Fisheries, 2018, 11(6): 56−60.
|
[12] |
魏亚男, 王晓梅, 姚鹏程, 等. 比较不同DNA条形码对中国海岸带耐盐植物的识别率[J]. 生物多样性, 2017, 25(10): 1095−1104. doi: 10.17520/biods.2017164
Wei Ya’nan, Wang Xiaomei, Yao Pengcheng, et al. Comparison of species resolution rates of DNA barcoding for Chinese coastal halo-tolerant plants[J]. Biodiversity Science, 2017, 25(10): 1095−1104. doi: 10.17520/biods.2017164
|
[13] |
Kruskal J B. Nonmetric multidimensional scaling: a numerical method[J]. Psychometrika, 1964, 29(2): 115−129. doi: 10.1007/BF02289694
|
[14] |
Newmaster S G, Fazekas A J, Steeves R A D, et al. Testing candidate plant barcode regions in the Myristicaceae[J]. Molecular Ecology Resources, 2008, 8(3): 480−490. doi: 10.1111/j.1471-8286.2007.02002.x
|
[15] |
魏观渊, 黄桂芳. 厦门湾春、秋季鱼类群落结构及其多样性[J]. 中国水产科学, 2021, 28(8): 1060−1068.
Wei Guanyuan, Huang Guifang. Fish community structure and species diversity during spring and autumn in the Xiamen Bay[J]. Journal of Fishery Sciences of China, 2021, 28(8): 1060−1068.
|
[16] |
Taberlet P, Bonin A, Zinger L, et al. Environmental DNA—for Biodiversity Research and Monitoring[M]. Oxford: Oxford University Press, 2018: 206.
|
[17] |
Evans N T, Olds B P, Renshaw M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Molecular Ecology Resources, 2016, 16(1): 29−41. doi: 10.1111/1755-0998.12433
|
[18] |
Riaz T, Shehzad W, Viari A, et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis[J]. Nucleic Acids Research, 2011, 39(21): e145. doi: 10.1093/nar/gkr732
|
[19] |
Bylemans J, Gleeson D M, Hardy C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia)[J]. Ecology and Evolution, 2018, 8(17): 8697−8712. doi: 10.1002/ece3.4387
|
[20] |
Milan D T, Mendes I S, Damasceno J S, et al. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment[J]. Scientific Reports, 2020, 10(1): 17966. doi: 10.1038/s41598-020-74902-3
|
[21] |
Kitano T, Umetsu K, Tian Wei, et al. Two universal primer sets for species identification among vertebrates[J]. International Journal of Legal Medicine, 2007, 121(5): 423−427. doi: 10.1007/s00414-006-0113-y
|
[22] |
Shaw J L A, Clarke L J, Wedderburn S D, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system[J]. Biological Conservation, 2016, 197: 131−138. doi: 10.1016/j.biocon.2016.03.010
|
[23] |
DiBattista J D, Coker D J, Sinclair-Taylor T H, et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea[J]. Coral Reefs, 2017, 36(4): 1245−1252. doi: 10.1007/s00338-017-1618-1
|
[24] |
Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society of London, Series B: Biological Sciences, 2003, 270(1512): 313−321. doi: 10.1098/rspb.2002.2218
|
[25] |
Collins R A, Bakker J, Wangensteen O S, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI[J]. Methods in Ecology and Evolution, 2019, 10(11): 1985−2001. doi: 10.1111/2041-210X.13276
|
[26] |
Menning D, Simmons T, Talbot S. Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA[J]. Conservation Genetics Resources, 2020, 12(1): 109−123. doi: 10.1007/s12686-018-1071-7
|
[27] |
Jennings W B, Ruschi P A, Ferraro G, et al. Barcoding the Neotropical freshwater fish fauna using a new pair of universal COI primers with a discussion of primer dimers and M13 primer tails[J]. Genome, 2019, 62(2): 77−83. doi: 10.1139/gen-2018-0145
|
[28] |
Sultana S, Ali M E, Hossain M A M, et al. Universal mini COI barcode for the identification of fish species in processed products[J]. Food Research International, 2018, 105: 19−28. doi: 10.1016/j.foodres.2017.10.065
|
[29] |
Gantner S, Andersson A F, Alonso-Sáez L, et al. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples[J]. Journal of Microbiological Methods, 2011, 84(1): 12−18. doi: 10.1016/j.mimet.2010.10.001
|
[30] |
Freeland J R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA[J]. Genome, 2017, 60(4): 358−374. doi: 10.1139/gen-2016-0100
|
[31] |
Deiner K, Renshaw M A, Li Yiyuan, et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA[J]. Methods in Ecology and Evolution, 2017, 8(12): 1888−1898. doi: 10.1111/2041-210X.12836
|
[32] |
李渊. 鲳属鱼类形态学和遗传学研究[D]. 青岛: 中国海洋大学, 2015.
Li Yuan. Studies on morphology and genetics of Pampus species[D]. Qingdao: Ocean University of China, 2015.
|
[33] |
Lockwood S F, Bickham J W. Genetic stock assessment of spawning Arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content[J]. Cytometry, 1991, 12(3): 260−267. doi: 10.1002/cyto.990120309
|
[34] |
Shubina E A, Ponomareva E V, Gritsenko O F. Genetic structure of the Salvelinus genus chars from reservoirs of the Kuril Islands[J]. Biochemistry (Moscow), 2007, 72(12): 1331−1348. doi: 10.1134/S0006297907120073
|
[35] |
张辉. 西北太平洋两种卵胎生鱼类(许氏平鲉和褐菖鲉)的分子系统地理学研究[D]. 青岛: 中国海洋大学, 2013.
Zhang Hui. Molecular phylogeography of two marine ovoviviparous fishes in Northwestern Pacific[D]. Qingdao: Ocean University of China, 2013.
|
[36] |
潘晓哲. 中、日斑鰶耳石形态及线粒体基因组研究[D]. 青岛: 中国海洋大学, 2012.
Pan Xiaozhe. Otolith morphological study and analysis of the mitochondrial genome of Chinese and Japanese dotted gizzard shad (Konosirus punctatus)[D]. Qingdao: Ocean University of China, 2012.
|
[37] |
张艳春. 大口鳒Psettodes erumei线粒体全序列的研究和鲽形目鱼类系统进化分析[D]. 青岛: 中国海洋大学, 2009.
Zhang Yanchun. Analysis of the mitoehondrial genome of Psettodes erumei and phylogenetic analyses of flatfishes[D]. Qingdao: Ocean University of China, 2009.
|
[38] |
林小婉. 新疆额尔齐斯河北极茴鱼线粒体全基因组测定及遗传多样性分析[D]. 哈尔滨: 哈尔滨师范大学, 2021.
Lin Xiaowan. Analysis of complete genome mitochondrial sequence and genetic diversity of Thymallus arcticus arcticus (pallas) in Xinjiang[D]. Harbin: Harbin Normal University, 2021.
|
[39] |
Evans N T, Lamberti G A. Freshwater fisheries assessment using environmental DNA: a primer on the method, its potential, and shortcomings as a conservation tool[J]. Fisheries Research, 2018, 197: 60−66. doi: 10.1016/j.fishres.2017.09.013
|
[40] |
Hänfling B, Handley L L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods[J]. Molecular Ecology, 2016, 25(13): 3101−3119. doi: 10.1111/mec.13660
|
![]() |
![]() |