Citation: | Guo Yidong,Lin Hangjie,Yu Qian, et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao,2022, 44(12):148–160 doi: 10.12284/hyxb2022147 |
[1] |
Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
|
[2] |
Möller I, Kudella M, Rupprecht F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727−731. doi: 10.1038/ngeo2251
|
[3] |
Stark J, Plancke Y, Ides S, et al. Coastal flood protection by a combined nature-based and engineering approach: modeling the effects of marsh geometry and surrounding dikes[J]. Estuarine, Coastal and Shelf Science, 2016, 175: 34−45. doi: 10.1016/j.ecss.2016.03.027
|
[4] |
Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111.
|
[5] |
Haas H L, Rose K A, Fry B, et al. Brown shrimp on the edge: linking habitat to survival using an individual-based simulation model[J]. Ecological Applications, 2004, 14(4): 1232−1247. doi: 10.1890/03-5101
|
[6] |
Nelson J L, Zavaleta E S. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise[J]. PLoS ONE, 2012, 7(8): e38558. doi: 10.1371/journal.pone.0038558
|
[7] |
Leonardi N, Carnacina I, Donatelli C, et al. Dynamic interactions between coastal storms and salt marshes: a review[J]. Geomorphology, 2018, 301: 92−107. doi: 10.1016/j.geomorph.2017.11.001
|
[8] |
Fagherazzi S, Mariotti G, Leonardi N, et al. Salt marsh dynamics in a period of accelerated sea level rise[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(8): e2019JF005200.
|
[9] |
Mudd S M, Howell S M, Morris J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation[J]. Estuarine, Coastal and Shelf Science, 2009, 82(3): 377−389. doi: 10.1016/j.ecss.2009.01.028
|
[10] |
Kirwan M L, Guntenspergen G R. Influence of tidal range on the stability of coastal marshland[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F2): F02009.
|
[11] |
Ladd C J T, Duggan-Edwards M F, Bouma T J, et al. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion[J]. Geophysical Research Letters, 2019, 46(20): 11178−11187. doi: 10.1029/2019GL083315
|
[12] |
Van de Koppel J, van der Wal D, Bakker J P, et al. Self-organization and vegetation collapse in salt marsh ecosystems[J]. The American Naturalist, 2005, 165(1): E1−E12. doi: 10.1086/426602
|
[13] |
Zhao Yangyang, Yu Qian, Wang Dandan, et al. Rapid formation of marsh-edge cliffs, Jiangsu coast, China[J]. Marine Geology, 2017, 385: 260−273. doi: 10.1016/j.margeo.2017.02.001
|
[14] |
Leonardi N, Fagherazzi S. How waves shape salt marshes[J]. Geology, 2014, 42(10): 887−890. doi: 10.1130/G35751.1
|
[15] |
Leonardi N, Defne Z, Ganju N K, et al. Salt marsh erosion rates and boundary features in a shallow Bay[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(10): 1861−1875. doi: 10.1002/2016JF003975
|
[16] |
Evans B R, Möller I, Spencer T, et al. Dynamics of salt marsh margins are related to their three-dimensional functional form[J]. Earth Surface Processes and Landforms, 2019, 44(9): 1816−1827.
|
[17] |
Xie Weiming, Guo Leicheng, Wang Xianye, et al. Detection of seasonal changes in vegetation and morphology on coastal salt marshes using terrestrial laser scanning[J]. Geomorphology, 2021, 380: 107621. doi: 10.1016/j.geomorph.2021.107621
|
[18] |
Ganju N K, Defne Z, Fagherazzi S. Are elevation and open-water conversion of salt marshes connected?[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086703.
|
[19] |
Anthony E J, Dolique F, Gardel A, et al. Nearshore intertidal topography and topographic-forcing mechanisms of an Amazon-derived mud bank in French Guiana[J]. Continental Shelf Research, 2008, 28(6): 813−822. doi: 10.1016/j.csr.2008.01.003
|
[20] |
Brunier G, Michaud E, Fleury J, et al. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry[J]. Remote Sensing of Environment, 2020, 241: 111717. doi: 10.1016/j.rse.2020.111717
|
[21] |
Anderson K, Westoby M J, James M R. Low-budget topographic surveying comes of age: structure from motion photogrammetry in geography and the geosciences[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(2): 163−173. doi: 10.1177/0309133319837454
|
[22] |
Taddia Y, Pellegrinelli A, Corbau C, et al. High-resolution monitoring of tidal systems using UAV: a case study on Poplar Island, MD (USA)[J]. Remote Sensing, 2021, 13(7): 1364. doi: 10.3390/rs13071364
|
[23] |
Gómez-Pazo A, Pérez-Alberti A, Trenhaile A. High resolution mapping and analysis of shore platform morphology in Galicia, northwestern Spain[J]. Marine Geology, 2021, 436: 106471. doi: 10.1016/j.margeo.2021.106471
|
[24] |
Koukouvelas I Κ, Nikolakopoulos K G, Zygouri V, et al. Post-seismic monitoring of cliff mass wasting using an unmanned aerial vehicle and field data at Egremni, Lefkada Island, Greece[J]. Geomorphology, 2020, 367: 107306. doi: 10.1016/j.geomorph.2020.107306
|
[25] |
Leonardi N, Fagherazzi S. Effect of local variability in erosional resistance on large-scale morphodynamic response of salt marshes to wind waves and extreme events[J]. Geophysical Research Letters, 2015, 42(14): 5872−5879. doi: 10.1002/2015GL064730
|
[26] |
Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 2012, 50(1): RG1002.
|
[27] |
Zhang Xiaodong, Lu Zhiyong, Jiang Shenghui, et al. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors[J]. Marine Geology, 2018, 400: 38−48. doi: 10.1016/j.margeo.2018.03.006
|
[28] |
Chen L, Zhou Z, Xu F, et al. Field observation of saltmarsh-edge morphology and associated vegetation characteristics in an open-coast tidal flat[J]. Journal of Coastal Research, 2020, 95(S1): 412−416.
|
[29] |
任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984(1): 40−54.
Ren Mei’e, Zhang Renshun, Yang Juhai. Sedimentation on tidal mud flat in Wanggang Area, Jiangsu Province, China[J]. Marine Science Bulletin, 1984(1): 40−54.
|
[30] |
任美锷. 江苏省海岸带与海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986.
Ren Mei’e. Comprehensive Investigation of the Coastal Zone and Tidal Flat Resources of Jiangsu Province[M]. Beijing: China Ocean Press, 1986.
|
[31] |
张忍顺, 沈永明, 陆丽云, 等. 江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J]. 海洋与湖沼, 2005, 36(4): 358−366. doi: 10.3321/j.issn:0029-814X.2005.04.011
Zhang Renshun, Shen Yongming, Lu Liyun, et al. Formation of Spartina alterniflora salt marsh on Jiangsu Coast, China[J]. Oceanologia et Limnologia Sinica, 2005, 36(4): 358−366. doi: 10.3321/j.issn:0029-814X.2005.04.011
|
[32] |
赵秧秧, 高抒, 王丹丹, 等. 盐沼前缘陡坎韵律性形态特征及其形成过程与机理[J]. 地理学报, 2014, 69(3): 378−390. doi: 10.11821/dlxb201403009
Zhao Yangyang, Gao Shu, Wang Dandan, et al. Characteristics and formation mechanisms of the rhythmicmorphology of salt-marsh edge cliffs[J]. Acta Geographica Sinica, 2014, 69(3): 378−390. doi: 10.11821/dlxb201403009
|
[33] |
Nikolakopoulos K G, Soura K, Koukouvelas I K, et al. UAV vs classical aerial photogrammetry for archaeological studies[J]. Journal of Archaeological Science: Reports, 2017, 14: 758−773. doi: 10.1016/j.jasrep.2016.09.004
|
[34] |
Peppa M V, Hall J, Goodyear J, et al. Photogrammetric assessment and comparison of Dji Phantom 4 Pro and Phantom 4 Rtk small unmanned aircraft systems[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13: 503−509. doi: 10.5194/isprs-archives-XLII-2-W13-503-2019
|
[35] |
Mian O, Lutes J, Lipa G, et al. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-1/W4: 397−402. doi: 10.5194/isprsarchives-XL-1-W4-397-2015
|
[36] |
Forlani G, Dall’Asta E, Diotri F, et al. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning[J]. Remote Sensing, 2018, 10(2): 311. doi: 10.3390/rs10020311
|
[37] |
Long N, Millescamps B, Guillot B, et al. Monitoring the topography of a dynamic tidal inlet using UAV imagery[J]. Remote Sensing, 2016, 8(5): 387. doi: 10.3390/rs8050387
|
[38] |
Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300−314. doi: 10.1016/j.geomorph.2012.08.021
|
[39] |
Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4): 50. doi: 10.3390/ijgi5040050
|
[40] |
Chassereau J E, Bell J M, Torres R. A comparison of GPS and lidar salt marsh DEMs[J]. Earth Surface Processes and Landforms, 2011, 36(13): 1770−1775. doi: 10.1002/esp.2199
|
[41] |
Goodwin G C H, Mudd S M, Clubb F J. Unsupervised detection of salt marsh platforms: a topographic method[J]. Earth Surface Dynamics, 2018, 6(1): 239−255. doi: 10.5194/esurf-6-239-2018
|
[42] |
Farris A S, Defne Z, Ganju N K. Identifying salt marsh shorelines from remotely sensed elevation data and imagery[J]. Remote Sensing, 2019, 11(15): 1795. doi: 10.3390/rs11151795
|
[43] |
McLoughlin S M, Wiberg P L, Safak I, et al. Rates and forcing of marsh edge erosion in a shallow coastal bay[J]. Estuaries and Coasts, 2015, 38(2): 620−638. doi: 10.1007/s12237-014-9841-2
|
[44] |
Thieler E R, Himmelstoss E A, Zichichi J L, et al. The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change[R]. Reston, VA: U. S. Geological Survey, 2009.
|
[45] |
Allen J R L. Muddy alluvial coasts of Britain: field criteria for shoreline position and movement in the recent past[J]. Proceedings of the Geologists’ Association, 1993, 104(4): 241−262. doi: 10.1016/S0016-7878(08)80044-2
|
[46] |
Donadio C, Paliaga G, Radke J D. Tsunamis and rapid coastal remodeling: linking energy and fractal dimension[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(4): 550−571. doi: 10.1177/0309133319893924
|
[47] |
Dubuc B, Quiniou J F, Roques-Carmes C, et al. Evaluating the fractal dimension of profiles[J]. Physical Review A, 1989, 39(3): 1500−1512. doi: 10.1103/PhysRevA.39.1500
|
[48] |
Temmerman S, Bouma T J, Van de Koppel J, et al. Vegetation causes channel erosion in a tidal landscape[J]. Geology, 2007, 35(7): 631−634. doi: 10.1130/G23502A.1
|
[49] |
Lopes C L, Mendes R, Caçador I, et al. Assessing salt marsh extent and condition changes with 35 years of Landsat imagery: Tagus Estuary case study[J]. Remote Sensing of Environment, 2020, 247: 111939. doi: 10.1016/j.rse.2020.111939
|
[50] |
Zhang H, Aldana-Jague E, Clapuyt F, et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection[J]. Earth Surface Dynamics, 2019, 7(3): 807−827. doi: 10.5194/esurf-7-807-2019
|
[51] |
Tomaštík J, Mokroš M, Surový P, et al. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?[J]. Remote Sensing, 2019, 11(6): 721. doi: 10.3390/rs11060721
|
[52] |
Woodget A S, Carbonneau P E, Visser F, et al. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(1): 47−64. doi: 10.1002/esp.3613
|
[53] |
Hladik C, Alber M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model[J]. Remote Sensing of Environment, 2012, 121: 224−235. doi: 10.1016/j.rse.2012.01.018
|
[54] |
Kumar L, Sinha P. Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory[J]. GIScience & Remote Sensing, 2014, 51(5): 483−497.
|
[55] |
Tonelli M, Fagherazzi S, Petti M. Modeling wave impact on salt marsh boundaries[J]. Journal of Geophysical Research: Oceans, 2010, 115(C9): C09028.
|
[56] |
Mariotti G, Fagherazzi S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F1): F01004.
|
[57] |
Allen J R L. Evolution of salt-marsh cliffs in muddy and sandy systems: a qualitative comparison of British West-Coast estuaries[J]. Earth Surface Processes and Landforms, 1989, 14(1): 85−92. doi: 10.1002/esp.3290140108
|