Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 12
Jan.  2023
Turn off MathJax
Article Contents
Guo Yidong,Lin Hangjie,Yu Qian, et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao,2022, 44(12):148–160 doi: 10.12284/hyxb2022147
Citation: Guo Yidong,Lin Hangjie,Yu Qian, et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao,2022, 44(12):148–160 doi: 10.12284/hyxb2022147

Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry

doi: 10.12284/hyxb2022147
  • Received Date: 2021-10-22
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-08-09
  • Publish Date: 2023-01-17
  • Coastal salt marsh margin, as the transition zone between salt marsh and tidal flat, presents three types of three-dimensional form: smooth, transition and cliff. And it shows different curvilinear features in the planar shape. As a high dynamic bio-geomorphic system, marsh margin changes rapidly due to the influence of natural processes and human activities. But the lack of high-resolution observational data makes further understanding of this change difficult. Here, we address this challenge using UAV-based Structure-from-Motion (UAV-SfM) photogrammetry which has the advantages of high resolution, non-invasive, repeatability, and low cost. We conducted two aerial surveys of salt marsh on Jiangsu coast, to obtain orthophotographs and Digital Surface Model (DSM) with cm-level pixel resolutions. And it supports us to determine the location of marsh margin, classify the type of the margin, and quantitatively describe the topography changes. We found the smooth and cliff margin are stable and dominant. The smooth margin has complex planar shape and retreats slowly. And the transition and cliff margin have regular shape and retreat fast. The transition margin changes drastically and turns to the cliff margin. This work proves that UAV-SfM photogrammetry is suitable for efficient and accurate quantification of the topography of marsh margin, and provides a new perspective for understanding the evolution process of marsh margin.
  • loading
  • [1]
    Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
    [2]
    Möller I, Kudella M, Rupprecht F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727−731. doi: 10.1038/ngeo2251
    [3]
    Stark J, Plancke Y, Ides S, et al. Coastal flood protection by a combined nature-based and engineering approach: modeling the effects of marsh geometry and surrounding dikes[J]. Estuarine, Coastal and Shelf Science, 2016, 175: 34−45. doi: 10.1016/j.ecss.2016.03.027
    [4]
    Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111.
    [5]
    Haas H L, Rose K A, Fry B, et al. Brown shrimp on the edge: linking habitat to survival using an individual-based simulation model[J]. Ecological Applications, 2004, 14(4): 1232−1247. doi: 10.1890/03-5101
    [6]
    Nelson J L, Zavaleta E S. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise[J]. PLoS ONE, 2012, 7(8): e38558. doi: 10.1371/journal.pone.0038558
    [7]
    Leonardi N, Carnacina I, Donatelli C, et al. Dynamic interactions between coastal storms and salt marshes: a review[J]. Geomorphology, 2018, 301: 92−107. doi: 10.1016/j.geomorph.2017.11.001
    [8]
    Fagherazzi S, Mariotti G, Leonardi N, et al. Salt marsh dynamics in a period of accelerated sea level rise[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(8): e2019JF005200.
    [9]
    Mudd S M, Howell S M, Morris J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation[J]. Estuarine, Coastal and Shelf Science, 2009, 82(3): 377−389. doi: 10.1016/j.ecss.2009.01.028
    [10]
    Kirwan M L, Guntenspergen G R. Influence of tidal range on the stability of coastal marshland[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F2): F02009.
    [11]
    Ladd C J T, Duggan-Edwards M F, Bouma T J, et al. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion[J]. Geophysical Research Letters, 2019, 46(20): 11178−11187. doi: 10.1029/2019GL083315
    [12]
    Van de Koppel J, van der Wal D, Bakker J P, et al. Self-organization and vegetation collapse in salt marsh ecosystems[J]. The American Naturalist, 2005, 165(1): E1−E12. doi: 10.1086/426602
    [13]
    Zhao Yangyang, Yu Qian, Wang Dandan, et al. Rapid formation of marsh-edge cliffs, Jiangsu coast, China[J]. Marine Geology, 2017, 385: 260−273. doi: 10.1016/j.margeo.2017.02.001
    [14]
    Leonardi N, Fagherazzi S. How waves shape salt marshes[J]. Geology, 2014, 42(10): 887−890. doi: 10.1130/G35751.1
    [15]
    Leonardi N, Defne Z, Ganju N K, et al. Salt marsh erosion rates and boundary features in a shallow Bay[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(10): 1861−1875. doi: 10.1002/2016JF003975
    [16]
    Evans B R, Möller I, Spencer T, et al. Dynamics of salt marsh margins are related to their three-dimensional functional form[J]. Earth Surface Processes and Landforms, 2019, 44(9): 1816−1827.
    [17]
    Xie Weiming, Guo Leicheng, Wang Xianye, et al. Detection of seasonal changes in vegetation and morphology on coastal salt marshes using terrestrial laser scanning[J]. Geomorphology, 2021, 380: 107621. doi: 10.1016/j.geomorph.2021.107621
    [18]
    Ganju N K, Defne Z, Fagherazzi S. Are elevation and open-water conversion of salt marshes connected?[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086703.
    [19]
    Anthony E J, Dolique F, Gardel A, et al. Nearshore intertidal topography and topographic-forcing mechanisms of an Amazon-derived mud bank in French Guiana[J]. Continental Shelf Research, 2008, 28(6): 813−822. doi: 10.1016/j.csr.2008.01.003
    [20]
    Brunier G, Michaud E, Fleury J, et al. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry[J]. Remote Sensing of Environment, 2020, 241: 111717. doi: 10.1016/j.rse.2020.111717
    [21]
    Anderson K, Westoby M J, James M R. Low-budget topographic surveying comes of age: structure from motion photogrammetry in geography and the geosciences[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(2): 163−173. doi: 10.1177/0309133319837454
    [22]
    Taddia Y, Pellegrinelli A, Corbau C, et al. High-resolution monitoring of tidal systems using UAV: a case study on Poplar Island, MD (USA)[J]. Remote Sensing, 2021, 13(7): 1364. doi: 10.3390/rs13071364
    [23]
    Gómez-Pazo A, Pérez-Alberti A, Trenhaile A. High resolution mapping and analysis of shore platform morphology in Galicia, northwestern Spain[J]. Marine Geology, 2021, 436: 106471. doi: 10.1016/j.margeo.2021.106471
    [24]
    Koukouvelas I Κ, Nikolakopoulos K G, Zygouri V, et al. Post-seismic monitoring of cliff mass wasting using an unmanned aerial vehicle and field data at Egremni, Lefkada Island, Greece[J]. Geomorphology, 2020, 367: 107306. doi: 10.1016/j.geomorph.2020.107306
    [25]
    Leonardi N, Fagherazzi S. Effect of local variability in erosional resistance on large-scale morphodynamic response of salt marshes to wind waves and extreme events[J]. Geophysical Research Letters, 2015, 42(14): 5872−5879. doi: 10.1002/2015GL064730
    [26]
    Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 2012, 50(1): RG1002.
    [27]
    Zhang Xiaodong, Lu Zhiyong, Jiang Shenghui, et al. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors[J]. Marine Geology, 2018, 400: 38−48. doi: 10.1016/j.margeo.2018.03.006
    [28]
    Chen L, Zhou Z, Xu F, et al. Field observation of saltmarsh-edge morphology and associated vegetation characteristics in an open-coast tidal flat[J]. Journal of Coastal Research, 2020, 95(S1): 412−416.
    [29]
    任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984(1): 40−54.

    Ren Mei’e, Zhang Renshun, Yang Juhai. Sedimentation on tidal mud flat in Wanggang Area, Jiangsu Province, China[J]. Marine Science Bulletin, 1984(1): 40−54.
    [30]
    任美锷. 江苏省海岸带与海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986.

    Ren Mei’e. Comprehensive Investigation of the Coastal Zone and Tidal Flat Resources of Jiangsu Province[M]. Beijing: China Ocean Press, 1986.
    [31]
    张忍顺, 沈永明, 陆丽云, 等. 江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J]. 海洋与湖沼, 2005, 36(4): 358−366. doi: 10.3321/j.issn:0029-814X.2005.04.011

    Zhang Renshun, Shen Yongming, Lu Liyun, et al. Formation of Spartina alterniflora salt marsh on Jiangsu Coast, China[J]. Oceanologia et Limnologia Sinica, 2005, 36(4): 358−366. doi: 10.3321/j.issn:0029-814X.2005.04.011
    [32]
    赵秧秧, 高抒, 王丹丹, 等. 盐沼前缘陡坎韵律性形态特征及其形成过程与机理[J]. 地理学报, 2014, 69(3): 378−390. doi: 10.11821/dlxb201403009

    Zhao Yangyang, Gao Shu, Wang Dandan, et al. Characteristics and formation mechanisms of the rhythmicmorphology of salt-marsh edge cliffs[J]. Acta Geographica Sinica, 2014, 69(3): 378−390. doi: 10.11821/dlxb201403009
    [33]
    Nikolakopoulos K G, Soura K, Koukouvelas I K, et al. UAV vs classical aerial photogrammetry for archaeological studies[J]. Journal of Archaeological Science: Reports, 2017, 14: 758−773. doi: 10.1016/j.jasrep.2016.09.004
    [34]
    Peppa M V, Hall J, Goodyear J, et al. Photogrammetric assessment and comparison of Dji Phantom 4 Pro and Phantom 4 Rtk small unmanned aircraft systems[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13: 503−509. doi: 10.5194/isprs-archives-XLII-2-W13-503-2019
    [35]
    Mian O, Lutes J, Lipa G, et al. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-1/W4: 397−402. doi: 10.5194/isprsarchives-XL-1-W4-397-2015
    [36]
    Forlani G, Dall’Asta E, Diotri F, et al. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning[J]. Remote Sensing, 2018, 10(2): 311. doi: 10.3390/rs10020311
    [37]
    Long N, Millescamps B, Guillot B, et al. Monitoring the topography of a dynamic tidal inlet using UAV imagery[J]. Remote Sensing, 2016, 8(5): 387. doi: 10.3390/rs8050387
    [38]
    Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300−314. doi: 10.1016/j.geomorph.2012.08.021
    [39]
    Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4): 50. doi: 10.3390/ijgi5040050
    [40]
    Chassereau J E, Bell J M, Torres R. A comparison of GPS and lidar salt marsh DEMs[J]. Earth Surface Processes and Landforms, 2011, 36(13): 1770−1775. doi: 10.1002/esp.2199
    [41]
    Goodwin G C H, Mudd S M, Clubb F J. Unsupervised detection of salt marsh platforms: a topographic method[J]. Earth Surface Dynamics, 2018, 6(1): 239−255. doi: 10.5194/esurf-6-239-2018
    [42]
    Farris A S, Defne Z, Ganju N K. Identifying salt marsh shorelines from remotely sensed elevation data and imagery[J]. Remote Sensing, 2019, 11(15): 1795. doi: 10.3390/rs11151795
    [43]
    McLoughlin S M, Wiberg P L, Safak I, et al. Rates and forcing of marsh edge erosion in a shallow coastal bay[J]. Estuaries and Coasts, 2015, 38(2): 620−638. doi: 10.1007/s12237-014-9841-2
    [44]
    Thieler E R, Himmelstoss E A, Zichichi J L, et al. The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change[R]. Reston, VA: U. S. Geological Survey, 2009.
    [45]
    Allen J R L. Muddy alluvial coasts of Britain: field criteria for shoreline position and movement in the recent past[J]. Proceedings of the Geologists’ Association, 1993, 104(4): 241−262. doi: 10.1016/S0016-7878(08)80044-2
    [46]
    Donadio C, Paliaga G, Radke J D. Tsunamis and rapid coastal remodeling: linking energy and fractal dimension[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(4): 550−571. doi: 10.1177/0309133319893924
    [47]
    Dubuc B, Quiniou J F, Roques-Carmes C, et al. Evaluating the fractal dimension of profiles[J]. Physical Review A, 1989, 39(3): 1500−1512. doi: 10.1103/PhysRevA.39.1500
    [48]
    Temmerman S, Bouma T J, Van de Koppel J, et al. Vegetation causes channel erosion in a tidal landscape[J]. Geology, 2007, 35(7): 631−634. doi: 10.1130/G23502A.1
    [49]
    Lopes C L, Mendes R, Caçador I, et al. Assessing salt marsh extent and condition changes with 35 years of Landsat imagery: Tagus Estuary case study[J]. Remote Sensing of Environment, 2020, 247: 111939. doi: 10.1016/j.rse.2020.111939
    [50]
    Zhang H, Aldana-Jague E, Clapuyt F, et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection[J]. Earth Surface Dynamics, 2019, 7(3): 807−827. doi: 10.5194/esurf-7-807-2019
    [51]
    Tomaštík J, Mokroš M, Surový P, et al. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?[J]. Remote Sensing, 2019, 11(6): 721. doi: 10.3390/rs11060721
    [52]
    Woodget A S, Carbonneau P E, Visser F, et al. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(1): 47−64. doi: 10.1002/esp.3613
    [53]
    Hladik C, Alber M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model[J]. Remote Sensing of Environment, 2012, 121: 224−235. doi: 10.1016/j.rse.2012.01.018
    [54]
    Kumar L, Sinha P. Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory[J]. GIScience & Remote Sensing, 2014, 51(5): 483−497.
    [55]
    Tonelli M, Fagherazzi S, Petti M. Modeling wave impact on salt marsh boundaries[J]. Journal of Geophysical Research: Oceans, 2010, 115(C9): C09028.
    [56]
    Mariotti G, Fagherazzi S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F1): F01004.
    [57]
    Allen J R L. Evolution of salt-marsh cliffs in muddy and sandy systems: a qualitative comparison of British West-Coast estuaries[J]. Earth Surface Processes and Landforms, 1989, 14(1): 85−92. doi: 10.1002/esp.3290140108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (487) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return