Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Xiong Yuan,Huang Rongyong,Yu Kefu. Estimation of coral reef area from multi-temporal and multi-spectral satellite images: A case study on Lingyang Reef, Xisha Islands[J]. Haiyang Xuebao,2022, 44(8):151–168 doi: 10.12284/hyxb2022138
Citation: Xiong Yuan,Huang Rongyong,Yu Kefu. Estimation of coral reef area from multi-temporal and multi-spectral satellite images: A case study on Lingyang Reef, Xisha Islands[J]. Haiyang Xuebao,2022, 44(8):151–168 doi: 10.12284/hyxb2022138

Estimation of coral reef area from multi-temporal and multi-spectral satellite images: A case study on Lingyang Reef, Xisha Islands

doi: 10.12284/hyxb2022138
  • Received Date: 2021-12-21
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-02-16
  • Available Online: 2022-08-15
  • Publish Date: 2022-08-15
  • Estimating coral reef area accurately is fundamental for assessing the resource and environmental effects on coral reefs. However, there is little clear agreement on the areas of coral reefs until now. The main reason is that there is lack of a reliable method to estimate the areas of coral reefs. To address this problem, a low-cost semi-automatic method of coral reef area estimation by using multi-temporal and multi-spectral satellite images is proposed in this paper. The method contains extraction of instantaneous boundaries and fusion of the boundaries. Firstly, the boundaries of the coral reef geomorphologic zones are automatically delineated by using gradient vector flow-snake model (GVF-Snake) after roughly locating the positions of the geomorphic zone boundaries. Thereafter, the extracted multi-temporal geomorphic zone boundaries are converted to geomorphic zone areas and then fused to establish a reliable and accurate geomorphic zone. According to our experiments on the 53 images of Sentinel-2 MSI (the Landsat 8 OLI images are used to verify method stability, the area of Ling Yang Reef is 17.29 km2), the area of Ling Yang Reef is 17.22 km2, among which the areas of the front reef slope, the reef flat-lagoon slope, and the lagoon are 1.76 km2, 10.29 km2, and 5.17 km2, respectively. The results are consistent with in-field survey data. Specifically, the differences between the positions of the geomorphic zone boundaries extracted by using the proposed method and those determined by bathymetric data are in the range of 0.2−4.9 m (less than 0.5 pixel of Sentinel-2 MSI images). The differences between the outline of the coral reef and the 30 m isobath line is also within 1 pixel (5.7−9.5 m). The difference between the area extracted from multi-temporal images by using the proposed method and the area determined by using a high-resolution WorldView-2 image is 0.02%, i.e. Coral reef area calculated from multi-temporal Sentinel-2 MSI images by using our method is able to compete to high-resolution WorldView-2 image in accuracy. Furthermore, the complete, the correction, and the quality of the boundaries are improved from 60%, 64%, and 54% for single-image method to 84%, 83%, and 72% for our multi-temporal method, respectively. Besides, the proposed method can also reduce variations of the estimated coral reef area caused by using satellite images with different sensors. In other word, if more than 6 scenes of satellite images was utilized, the standard deviations of the estimated coral reef area are shown to be less than 0.01 km2 and 0.05 km2 respectively for Sentinel-2 MSI and Landsat 8 OLI images. They are only equivalent to 0.2% and 0.5% of the total coral reef area. In summary, the proposed method is accurate, reliable, and stable for coral reef area estimation.
  • loading
  • [1]
    余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018: 578.

    Yu Kefu. Introduction to the Science of Coral Reefs[M]. Beijing: Science Press, 2018: 578.
    [2]
    余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287−1293. doi: 10.11867/j.issn.1001-8166.2014.11.1287

    Yu Kefu, Zhang Guangxue, Wang Ren. Studies on the coral reefs of the South China Sea: from global change to oil-gas exploration[J]. Advances in Earth Science, 2014, 29(11): 1287−1293. doi: 10.11867/j.issn.1001-8166.2014.11.1287
    [3]
    Chen Xiaoyan, Yu Kefu, Huang Xueyong, et al. Atmospheric nitrogen deposition increases the possibility of macroalgal dominance on remote coral reefs[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(5): 1355−1369. doi: 10.1029/2019JG005074
    [4]
    刘嘉鎏. 南海珊瑚岛、礁对近40年气候变暖响应的遥感影像记录[D]. 南宁: 广西大学, 2020.

    Liu Jialiu. Response of coral reefs and islands in the South China Sea to climate warming in the past 40 years recorded by remote sensing images[D]. Nanning: Guangxi University, 2020.
    [5]
    McLeod E, Shaver E C, Beger M, et al. Using resilience assessments to inform the management and conservation of coral reef ecosystems[J]. Journal of Environmental Management, 2021, 277: 111384. doi: 10.1016/j.jenvman.2020.111384
    [6]
    王丽荣, 余克服, 赵焕庭, 等. 南海珊瑚礁经济价值评估[J]. 热带地理, 2014, 34(1): 44−49.

    Wang Lirong, Yu Kefu, Zhao Huanting, et al. Economic valuation of the coral reefs in South China Sea[J]. Tropical Geography, 2014, 34(1): 44−49.
    [7]
    Courtney T A, Andersson A J. Evaluating measurements of coral reef net ecosystem calcification rates[J]. Coral Reefs, 2019, 38(5): 997−1006. doi: 10.1007/s00338-019-01828-2
    [8]
    Liu Jialiu, Huang Rongyong, Yu Kefu, et al. How lime-sand islands in the South China Sea have responded to global warming over the last 30 years: evidence from satellite remote sensing images[J]. Geomorphology, 2020, 371: 107423. doi: 10.1016/j.geomorph.2020.107423
    [9]
    黄荣永, 余克服, 王英辉, 等. 珊瑚礁遥感研究进展[J]. 遥感学报, 2019, 23(6): 1091−1112.

    Huang Rongyong, Yu Kefu, Wang Yinghui, et al. Progress of the study on coral reef remote sensing[J]. Journal of Remote Sensing, 2019, 23(6): 1091−1112.
    [10]
    Hughes T P, Huang Hui, Young M A L. The wicked problem of China’s disappearing coral reefs[J]. Conservation Biology, 2013, 27(2): 261−269. doi: 10.1111/j.1523-1739.2012.01957.x
    [11]
    Spalding M D, Ravilious C R, Green E P. World Atlas of Coral Reefs[M]. Berkeley, California, USA: University of California Press, 2001: 436.
    [12]
    赵焕庭. 华南海岸和南海诸岛地貌与环境[M]. 北京: 科学出版社, 1999: 528.

    Zhao Huanting. Geomorphology and Environment of South China Coast and South China Sea Islands[M]. Beijing: Science Press, 1999: 528.
    [13]
    Wang Pinxian, Li Qianyu. The South China Sea: Paleoceanography and Sedimentology[M]. Dordrecht: Springer, 2009: 516.
    [14]
    黄晖, 尤丰, 练健生, 等. 珠江口万山群岛海域造礁石珊瑚群落分布与保护[J]. 海洋通报, 2012, 31(2): 189−197. doi: 10.3969/j.issn.1001-6392.2012.02.010

    Huang Hui, You Feng, Lian Jiansheng, et al. Status and conservation strategies of the scleractinian coral community in the Wanshan Islands at Pearl River Estuary[J]. Marine Science Bulletin, 2012, 31(2): 189−197. doi: 10.3969/j.issn.1001-6392.2012.02.010
    [15]
    赵焕庭. 中国现代珊瑚礁研究[J]. 世界科技研究与发展, 1998(4): 98−105.

    Zhao Huanting. Researches of coral reef in modern China[J]. World Science and Technology Research and Development, 1998(4): 98−105.
    [16]
    UNEP-WCMC, World Fish Centre, WRI, et al. Global distribution of coral reefs[DB/OL]. [2021−06−09]. https://data.unep-wcmc.org/datasets/1
    [17]
    Atlas A C. Imagery, maps and monitoring of the world's tropical coral reefs[DB/OL]. [2021−06−09]. https://integration.allencoralatlas.com/atlas/
    [18]
    Dai C. Dongsha atoll in the South China Sea: past, present and future[C]//Islands of the World VIII International Conference “Changing Islands – Changing Worlds”. [S.l.: s.n.], 2004.
    [19]
    曾昭璇. 南海环礁的若干地貌特征[J]. 海洋通报, 1984, 3(3): 40−45.

    Zeng Zhaoxuan. Geomorphological features of atolls in the South China Sea[J]. Marine Science Bulletin, 1984, 3(3): 40−45.
    [20]
    曾昭璇, 梁景芬, 丘世钧. 中国珊瑚礁地貌研究[M]. 广州: 广东人民出版社, 1997: 474.

    Zeng Zhaoxuan, Liang Jingfen, Qiu Shijun. The Physiognomy of Coral Reef in China[M]. Guangzhou: Guangdong People’s Public House, 1997: 474.
    [21]
    陈史坚. 南海诸岛地名资料汇编[M]. 广州: 广东省地图出版社, 1987.

    Chen Shijian. A Compilation of Geographical Names of Nanhai Zhudao[M]. Guangzhou: Guangdong Map Publishing House, 1987.
    [22]
    钟晋梁. 南沙群岛珊瑚礁地貌研究[M]. 北京: 科学出版社, 1996.

    Zhong Jinliang. Geomorphology Research of Coral Reef of Nansha Islands[M]. Beijing: Science Press, 1996.
    [23]
    Huang Rongyong, Yu Kefu, Wang Yinghui, et al. Bathymetry of the coral reefs of Weizhou Island based on multispectral satellite images[J]. Remote Sensing, 2017, 9(7): 750. doi: 10.3390/rs9070750
    [24]
    Andréfouët S, Muller-Karger F E, Robinson J A, et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space[C]//Proceedings of the 10th ICRS. Okinawa, Japan: Japanese Coral Reef Society, 2006: 1732−1745.
    [25]
    Purkis S J, Gleason A C R, Purkis C R, et al. High-resolution habitat and bathymetry maps for 65, 000 sq. km of Earth’s remotest coral reefs[J]. Coral Reefs, 2019, 38(3): 467−488. doi: 10.1007/s00338-019-01802-y
    [26]
    朱海天, 冯倩, 梁超, 等. 基于随机森林的南沙岛礁分类方法研究[C]//“一带一路”战略与海洋科技创新——中国海洋学会2015年学术论文集. 北京: 海洋出版社, 2015.

    Zhu Haitian, Feng Qian, Liang Chao, et al. Study on classification method of Nansha Islands based on random forest[C]//“One Belt, One Road” Strategy and Marine Science and Technology Innovation—China Ocean Society 2015 Academic Papers. Beijing : China Ocean Press, 2015.
    [27]
    李成鹏, 徐慧, 禹文清. 基于中等分辨率遥感影像的珊瑚礁信息提取[J]. 北京测绘, 2020, 34(2): 214−218.

    Li Chengpeng, Xu Hui, Yu Wenqing. Analysis of classification ability of island nearshore substrate based on medium resolution remote sensing image[J]. Beijing Surveying and Mapping, 2020, 34(2): 214−218.
    [28]
    董娟, 任广波, 胡亚斌, 等. 基于高分辨率遥感的珊瑚礁地貌单元体系构建和分类方法——以8波段Worldview-2影像为例[J]. 热带海洋学报, 2020, 39(4): 116−129.

    Dong Juan, Ren Guangbo, Hu Yabin, et al. Construction and classification of coral reef geomorphic unit system based on high-resolution remote sensing: using 8-band Worldview-2 image as an example[J]. Journal of Tropical Oceanography, 2020, 39(4): 116−129.
    [29]
    霍艳辉. 基于阈值分割的三亚珊瑚礁空间分布研究[D]. 唐山: 华北理工大学, 2020.

    Huo Yanhui. Research on spatial distribution of coral reefs in Sanya based on threshold segmentation method[D]. Tangshan: North China University of Science and Technology, 2020.
    [30]
    Dong Yanzhu, Liu Yongxue, Hu Chuanmin, et al. Coral reef geomorphology of the Spratly Islands: a simple method based on time-series of Landsat-8 multi-band inundation maps[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157: 137−154. doi: 10.1016/j.isprsjprs.2019.09.011
    [31]
    汪小勇, 李铜基, 周虹丽, 等. 中国近海海洋光学特性及其分布[J]. 中国海洋大学学报(自然科学版), 2014, 44(1): 104−111.

    Wang Xiaoyong, Li Tongji, Zhou Hongli, et al. Discussion on ocean optics properties of Chinese offshore and its distribution characteristics[J]. Periodical of Ocean University of China, 2014, 44(1): 104−111.
    [32]
    赵英时. 遥感应用分析原理与方法[M]. 2版. 北京: 科学出版社, 2013.

    Zhao Yingshi. Principle and Method of Remote Sensing Application Analysis[M]. 2nd ed. Beijing: Science Press, 2013.
    [33]
    Lucas M Q, Goodman J. Linking coral reef remote sensing and field ecology: it’s a matter of scale[J]. Journal of Marine Science and Engineering, 2015, 3(1): 1−20.
    [34]
    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37−44. doi: 10.11834/jrs.20040106

    Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis Ⅰ: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37−44. doi: 10.11834/jrs.20040106
    [35]
    Hedley J D, Roelfsema C M, Phinn S R, et al. Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design[J]. Remote Sensing, 2012, 4(1): 271−302. doi: 10.3390/rs4010271
    [36]
    Mumby P J, Green E P, Edwards A J, et al. Coral reef habitat mapping: how much detail can remote sensing provide?[J]. Marine Biology, 1997, 130(2): 193−202. doi: 10.1007/s002270050238
    [37]
    Hedley J D, Harborne A R, Mumby P J. Technical note: simple and robust removal of sun glint for mapping shallow-water benthos[J]. International Journal of Remote Sensing, 2005, 26(10): 2107−2112. doi: 10.1080/01431160500034086
    [38]
    张耀光, 刘锴, 刘桂春, 等. 中国海南省三沙市行政建制特点与海洋资源开发[J]. 地理科学, 2014, 34(8): 971−978.

    Zhang Yaoguang, Liu Kai, Liu Guichun, et al. The characteristics of administrative system of Sansha City in Hainan Province and the exploitation of its marine resources[J]. Scientia Geographica Sinica, 2014, 34(8): 971−978.
    [39]
    Christensen V, Pauly D, He Xiaojia. Coral reef and other tropical fisheries[M]//Cochran J K, Bokuniewicz H J, Yager P L. Encyclopedia of Ocean Sciences. 3rd ed. Oxford: Academic Press, 2019: 320−323.
    [40]
    余克服, 赵焕庭, 朱袁智. 南沙群岛珊瑚礁区仙掌藻的现代沉积特征[J]. 沉积学报, 1998, 16(3): 20−24.

    Yu Kefu, Zhao Huanting, Zhu Yuanzhi. Modern sedimentary characteristic of halimeda on coral reefs of Nansha Islands[J]. Acta Sedimentologica Sinica, 1998, 16(3): 20−24.
    [41]
    Blanchon P. Geomorphic zonation[M]//Hopley D. Encyclopedia of Modern Coral Reefs: Structure, Form and Process. Dordrecht: Springer, 2011: 469−486.
    [42]
    刘嘉鎏, 黄荣永, 余克服. 黄岩岛环礁地貌近40年变化的遥感分析[J]. 第四纪研究, 2020, 40(3): 775−790. doi: 10.11928/j.issn.1001-7410.2020.03.15

    Liu Jialiu, Huang Rongyong, Yu Kefu. Analysis on the geomorphic changes of Huangyan Island based on satellite images over the Past 40 years[J]. Quaternary Sciences, 2020, 40(3): 775−790. doi: 10.11928/j.issn.1001-7410.2020.03.15
    [43]
    Xu Chenyang, Prince J L. Gradient vector flow: a new external force for snakes[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan : IEEE, 1997.
    [44]
    周旻曦, 刘永学, 李满春, 等. 多目标珊瑚岛礁地貌遥感信息提取方法——以西沙永乐环礁为例[J]. 地理研究, 2015, 34(4): 677−690.

    Zhou Minxi, Liu Yongxue, Li Manchun, et al. Geomorphologic information extraction for multi-objective coral islands from remotely sensed imagery: a case study for Yongle Atoll, South China Sea[J]. Geographical Research, 2015, 34(4): 677−690.
    [45]
    Cheng Jierong, Foo S. Distraction in GVF-based segmentation[C]//2007 6th International Conference on Information, Communications & Signal Processing. Singapore: IEEE, 2007.
    [46]
    Himmelstoss E A, Henderson R E, Kratzmann M G, et al. Digital shoreline analysis system (DSAS) version 5.0 user guide[EB/OL]. [2021−11−01]. https://www.usgs.gov/publications/digital-shoreline-analysis-system-dsas-version-50-user-guide
    [47]
    周亚男, 朱志文, 沈占锋, 等. 融合纹理特征和空间关系的TM影像海岸线自动提取[J]. 北京大学学报(自然科学版), 2012, 48(2): 273−279.

    Zhou Ya’nan, Zhu Zhiwen, Shen Zhanfeng, et al. Automatic extraction of coastline from tm image integrating texture and spatial relationship[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(2): 273−279.
    [48]
    乔学瑾, 王庆, 战超, 等. 基于多光谱数据的黄河三角洲岸线自动提取[J]. 海洋学报, 2016, 38(7): 59−71.

    Qiao Xuejin, Wang Qing, Zhan Chao, et al. Study on automatic extraction of coastline in the Yellow River Delta based on multi-spectral data[J]. Haiyang Xuebao, 2016, 38(7): 59−71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (796) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return