Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Zhang Wei,Du Chaofan,Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. Haiyang Xuebao,2022, 44(11):144–158 doi: 10.12284/hyxb2022137
Citation: Zhang Wei,Du Chaofan,Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. Haiyang Xuebao,2022, 44(11):144–158 doi: 10.12284/hyxb2022137

Sea surface wind field smart fusion base on machine learning method

doi: 10.12284/hyxb2022137
  • Received Date: 2021-10-11
  • Rev Recd Date: 2022-05-15
  • Available Online: 2022-08-05
  • Publish Date: 2022-11-03
  • The assimilation fusion or interpolation fusion of the sea surface wind field based on multi-source data is currently restricted by computing power. This paper proposes to train the XGBoost-based machine learning ERA-5 data correction fusion model in the overlapping area of the multi-source satellite data and the ERA-5 reanalysis data, and then use the model to quickly correct (machine learning inference) ERA-5 data, of which the ERA-5 whole area correction fusion it only takes about 2 seconds. Due to the rapidity of machine learning inference, the entire sea surface fusion wind field can be constructed at a lower computational cost. This paper expands on typical wind field variables such as 10 m wind speed, 10 m wind direction, U10 component and V10 component, taking into account the difference in sea and land distribution, using land masks to eliminate land areas, and constructing D_S_A_XGBoost, D_S_O_XGBoost, U_V_A_XGBoost, U_V_O_XGBoost corrections model, and finally generate sea surface fusion wind field. By comparing the ERA-5 reanalysis data before and after the correction with the satellite data, the above four models all reduce the gap between the ERA-5 reanalysis data and the satellite data. Especially in terms of wind speed, both root mean square error (RMSE) and mean absolute error (MAE) are effectively reduced. In terms of wind direction, RMSEd and MAEd also show a decreasing trend. Using Tropical Atmosphere Ocean Array (TAO) buoy data to evaluate the four XGBoost models, it is found that the U_V_O_XGBoost model has the best correction results for ERA-5 data, and its correlation reaches 0.893, an increase of about 0.011, and the results show that the fusion speed is greatly improved under the condition of ensuring the accuracy of wind field.
  • loading
  • [1]
    旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.

    Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5): 44−53.
    [2]
    廖菲, 邓华, 曾琳, 等. 南海北部海面风速概率分布特征[J]. 海洋学报, 2018, 40(5): 37−47.

    Liao Fei, Deng Hua, Zeng Lin, et al. The probability distribution of sea surface wind speeds over the northern South China Sea[J]. Haiyang Xuebao, 2018, 40(5): 37−47.
    [3]
    韩玉康, 周林, 赵艳玲, 等. 3种海面风场资料在吕宋海峡的比较与评估[J]. 海洋预报, 2019, 36(6): 44−52. doi: 10.11737/j.issn.1003-0239.2019.06.006

    Han Yukang, Zhou Lin, Zhao Yanling, et al. Evaluation of three sea surface wind data sets in Luzon Strait[J]. Marine Forecasts, 2019, 36(6): 44−52. doi: 10.11737/j.issn.1003-0239.2019.06.006
    [4]
    张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势[J]. 遥感信息, 2009(6): 87−94. doi: 10.3969/j.issn.1000-3177.2009.06.019

    Zhang Yi, Jiang Xingwei, Lin Mingsen, et al. The present research status and development trend of spacebonre microwave scatterometer[J]. Remote Sensing Information, 2009(6): 87−94. doi: 10.3969/j.issn.1000-3177.2009.06.019
    [5]
    解学通, 郁文贤, 郭丽青, 等. 基于遗传算法的微波散射计海面风矢量反演研究[J]. 海洋通报, 2008, 27(4): 1−11. doi: 10.3969/j.issn.1001-6392.2008.04.001

    Xie Xuetong, Yu Wenxian, Guo Liqing, et al. Research on genetic algorithm based ocean surface wind vector retrieval for microwave scatterometer[J]. Marine Science Bulletin, 2008, 27(4): 1−11. doi: 10.3969/j.issn.1001-6392.2008.04.001
    [6]
    林溢园, 邹巨洪, 何原荣, 等. 我国海洋二号卫星微波散射计数据处理软件设计[J]. 海洋通报, 2016, 35(4): 443−448. doi: 10.11840/j.issn.1001-6392.2016.04.012

    Lin Yiyuan, Zou Juhong, He Yuanrong, et al. Design of data processing software for HY-2 satellite microwave scatterometer[J]. Marine Science Bulletin, 2016, 35(4): 443−448. doi: 10.11840/j.issn.1001-6392.2016.04.012
    [7]
    陈心一, 郝增周, 潘德炉, 等. 中国近海海面风场的时空特征分析[J]. 海洋学研究, 2014, 32(1): 1−10.

    Chen Xinyi, Hao Zengzhou, Pan Delu, et al. Analysis of temporal and spatial feature of sea surface wind field in China offshore[J]. Journal of Marine Sciences, 2014, 32(1): 1−10.
    [8]
    Hung S C, Chang W Y, Tsai W F, et al. Development of high-precision wind, wave and current forecast system for offshore wind energy industry in Taiwan: a two-stage method of numerical simulation and AI correction[J]. Journal of the Chinese Institute of Engineers, 2021, 44(6): 532−543. doi: 10.1080/02533839.2021.1936643
    [9]
    刘付前, 骆永军, 王超. 基于遥感资料南海月平均风场分析[C]. 2009 航海技术理论研究论文集, [出版地不详: 出版者不详], 2009.

    Liu Fuqian, Luo Yongjun, Wang Chao. Analysis of the monthly average wind field in the South China Sea based on remote sensing data [J]. 2009 Research Papers on Navigation Technology Theory, [S.l.: s.n.], 2009.
    [10]
    唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122. doi: 10.3969/j.issn.1000-3177.2020.01.016

    Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122. doi: 10.3969/j.issn.1000-3177.2020.01.016
    [11]
    冯倩. 多传感器卫星海面风场遥感研究[D]. 青岛: 中国海洋大学, 2004.

    Feng Qian. Study of sea surface wind remote sensing by satellite multi-sensor data[D]. Qingdao: Ocean University of China, 2004.
    [12]
    柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.

    Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: National Marine Environmental Forecasting Center, 2018.
    [13]
    凌征, 王桂华, 陈大可, 等. 中国近海风场融合[C]// 首届中国“数字海洋”论坛. 天津: 国家海洋信息中心, 2008, 90−94.

    Ling Zheng, Wang Guihua, Chen Dake, et al. Integration of offshore wind fields in China [C]// The First China “Digital Ocean” Forum. Tianjin: National Maritime Information Centres, 2008, 90−94
    [14]
    Zhang H M, Reynolds R W, Smith T M. Adequacy of the in situ observing system in the satellite era for climate SST[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(1): 107−120. doi: 10.1175/JTECH1828.1
    [15]
    Zhang H M, Reynolds R W, Bates J J. P2. 23 blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present[C]//Proceedings of the 14th Conference on Satellite Meteorology and Oceanography. Atlanta, GA: American Meteorological Society 2006 Annual Meeting, 2006, 2.
    [16]
    齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123. doi: 10.3969/j.issn.1673-8748.2012.03.045

    Qi Yalin, Lin Mingsen. Application of the data fusion technique in the HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123. doi: 10.3969/j.issn.1673-8748.2012.03.045
    [17]
    Yan Q S, Zhang J, Meng J M, et al. Use of an optimum interpolation method to construct a high-resolution global ocean surface vector wind dataset from active scatterometers and passive radiometers[J]. International Journal of Remote Sensing, 2017, 38(20): 5569−5591. doi: 10.1080/01431161.2017.1341665
    [18]
    Chao Y, Li Z J, Kindle J C, et al. A high-resolution surface vector wind product for coastal oceans: Blending satellite scatterometer measurements with regional mesoscale atmospheric model simulations[J]. Geophysical Research Letters, 2003, 30(1): 13−1−13−4.
    [19]
    张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.

    Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018.
    [20]
    金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 2019, 45(4): 445−457. doi: 10.7519/j.issn.1000-0526.2019.04.001

    Jin Ronghua, Dai Kan, Zhao Ruixia, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China[J]. Meteorological Monthly, 2019, 45(4): 445−457. doi: 10.7519/j.issn.1000-0526.2019.04.001
    [21]
    陈克海, 解学通, 张金兰, 等. HY-2B卫星散射计海面风场产品质量分析[J]. 热带海洋学报, 2020, 39(6): 30−40.

    Chen Kehai, Xie Xuetong, Zhang Jinlan, et al. Accuracy analysis of the retrieved wind from HY-2B scatterometer[J]. Journal of Tropical Oceanography, 2020, 39(6): 30−40.
    [22]
    黄耀辉, 赵晓磊, 阎诚, 等. 中法海洋卫星及典型应用[J]. 卫星应用, 2020(5): 32−37. doi: 10.3969/j.issn.1674-9030.2020.05.011

    Huang Yaohui, Zhao Xiaolei, Yan Cheng, et al. CFOSAT and typical applications[J]. Satellite Application, 2020(5): 32−37. doi: 10.3969/j.issn.1674-9030.2020.05.011
    [23]
    Shen S S P, Dzikowski P, Li G L, et al. Interpolation of 1961−97 daily temperature and precipitation data onto Alberta polygons of ecodistrict and soil landscapes of Canada[J]. Journal of Applied Meteorology and Climatology, 2001, 40(12): 2162−2177. doi: 10.1175/1520-0450(2001)040<2162:IODTAP>2.0.CO;2
    [24]
    Hofstra N, Haylock M, New M, et al. Comparison of six methods for the interpolation of daily, European climate data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D21): D21110. doi: 10.1029/2008JD010100
    [25]
    潘留杰, 薛春芳, 王建鹏, 等. 一个简单的格点温度预报订正方法[J]. 气象, 2017, 43(12): 1584−1593. doi: 10.7519/j.issn.10000526.2017.12.015

    Pan Liujie, Xue Chunfang, Wang Jianpeng, et al. A simple grid temperature forecast correction method[J]. Meteorological Monthly, 2017, 43(12): 1584−1593. doi: 10.7519/j.issn.10000526.2017.12.015
    [26]
    Jones P D, Raper S C B, Bradley R S, et al. Northern hemisphere surface air temperature variations: 1851−1984[J]. Journal of Applied Meteorology and Climatology, 1986, 25(2): 161−179. doi: 10.1175/1520-0450(1986)025<0161:NHSATV>2.0.CO;2
    [27]
    陈小燕, 杨劲松, 黄韦艮, 等. 多源卫星高度计有效波高数据融合方法研究[J]. 海洋学报, 2009, 31(4): 51−57.

    Chen Xiaoyan, Yang Jinsong, Huang Weigen, et al. Research on the fusion methods of significant wave height data from multisatellite altimeters[J]. Haiyang Xuebao, 2009, 31(4): 51−57.
    [28]
    李彦, 王丽娜, 蒋镇. 一种针对气象要素的空间插值算法[J]. 重庆理工大学学报(自然科学), 2014, 28(6): 94−98, 116.

    Li Yan, Wang Li’na, Jiang Zhen. One kind of spatial interpolation algorithm for meteorological elements[J]. Journal of Chongqing University of Technology (Natural Science), 2014, 28(6): 94−98, 116.
    [29]
    饶莉娟, 王健林, 张星. 不同插值方法对精细化预报产品在青岛地区的检验比较[J]. 中国农学通报, 2020, 36(32): 100−108. doi: 10.11924/j.issn.1000-6850.casb20191000706

    Rao Lijuan, Wang Jianlin, Zhang Xing. Different interpolation methods: comparison for refined forecast products in Qingdao area[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 100−108. doi: 10.11924/j.issn.1000-6850.casb20191000706
    [30]
    肇毓锋, 吴奇. 多时间尺度下Kriging与IDW空间插值方法的适用性研究[J]. 黑龙江水利科技, 2020, 48(11): 9−14. doi: 10.3969/j.issn.1007-7596.2020.11.002

    Zhao Yufeng, Wu Qi. Applicability of Kriging and IDW spatial interpolation methods on multiple time scales[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(11): 9−14. doi: 10.3969/j.issn.1007-7596.2020.11.002
    [31]
    蒋伟达, 孙永福, 刘绍文, 等. 基于IDW的埕岛海域水下三角洲地形演变[J]. 海洋科学进展, 2020, 38(4): 697−707. doi: 10.3969/j.issn.1671-6647.2020.04.013

    Jiang Weida, Sun Yongfu, Liu Shaowen, et al. Terrain evolution of subaqueous delta in Chengdao Sea area based on IDW[J]. Advances in Marine Science, 2020, 38(4): 697−707. doi: 10.3969/j.issn.1671-6647.2020.04.013
    [32]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23−47.

    Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 23−47.
    [33]
    马良玉, 於世磊, 赵尚羽, 等. 基于随机搜索算法优化XGBoost的过热汽温预测模型[J]. 华北电力大学学报(自然科学版), 2021, 48(4): 99−105.

    Ma Liangyu, Yu Shilei, Zhao Shangyu, et al. Superheated steam temperature prediction models based on XGBoost optimized with random search algorithm[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(4): 99−105.
    [34]
    潘进, 丁强, 江爱朋, 等. 基于XGBoost的冷水机组不平衡数据故障诊断[J]. 机械强度, 2021, 43(1): 27−33.

    Pan Jin, Ding Qiang, Jiang Aipeng, et al. Fault diagnosis of unbalanced data of chillers based on XGBoost[J]. Journal of Mechanical Strength, 2021, 43(1): 27−33.
    [35]
    孙晓黎, 马超群, 朱才华. 基于XGBoost的轨道交通短时客流预测精度分析[J]. 交通科技与经济, 2021, 23(1): 54−58.

    Sun Xiaoli, Ma Chaoqun, Zhu Caihua. XGBoost-based analysis of prediction accuracy for short-term passenger flow in rail transit[J]. Technology & Economy in Areas of Communications, 2021, 23(1): 54−58.
    [36]
    Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
    [37]
    曾晓青, 薛峰, 姚莉, 等. 针对模式风场的格点预报订正方案对比[J]. 应用气象学报, 2019, 30(1): 49−60. doi: 10.11898/1001-7313.20190105

    Zeng Xiaoqing, Xue Feng, Yao Li, et al. Comparative study of different error correction methods on model output wind field[J]. Journal of Applied Meteorological Science, 2019, 30(1): 49−60. doi: 10.11898/1001-7313.20190105
    [38]
    Freilich M H, Dunbar R S. The accuracy of the NSCAT 1 vector winds: comparisons with national data buoy center buoys[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11231−11246. doi: 10.1029/1998JC900091
    [39]
    王国松, 王喜冬, 侯敏, 等. 基于观测和再分析数据的LSTM深度神经网络沿海风速预报应用研究[J]. 海洋学报, 2020, 42(1): 67−77.

    Wang Guosong, Wang Xidong, Hou Min, et al. Research on application of LSTM deep neural network on historical observation data and reanalysis data for sea surface wind speed forecasting[J]. Haiyang Xuebao, 2020, 42(1): 67−77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article views (773) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return