Citation: | Zhang Wei,Du Chaofan,Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. Haiyang Xuebao,2022, 44(11):144–158 doi: 10.12284/hyxb2022137 |
[1] |
旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.
Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5): 44−53.
|
[2] |
廖菲, 邓华, 曾琳, 等. 南海北部海面风速概率分布特征[J]. 海洋学报, 2018, 40(5): 37−47.
Liao Fei, Deng Hua, Zeng Lin, et al. The probability distribution of sea surface wind speeds over the northern South China Sea[J]. Haiyang Xuebao, 2018, 40(5): 37−47.
|
[3] |
韩玉康, 周林, 赵艳玲, 等. 3种海面风场资料在吕宋海峡的比较与评估[J]. 海洋预报, 2019, 36(6): 44−52. doi: 10.11737/j.issn.1003-0239.2019.06.006
Han Yukang, Zhou Lin, Zhao Yanling, et al. Evaluation of three sea surface wind data sets in Luzon Strait[J]. Marine Forecasts, 2019, 36(6): 44−52. doi: 10.11737/j.issn.1003-0239.2019.06.006
|
[4] |
张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势[J]. 遥感信息, 2009(6): 87−94. doi: 10.3969/j.issn.1000-3177.2009.06.019
Zhang Yi, Jiang Xingwei, Lin Mingsen, et al. The present research status and development trend of spacebonre microwave scatterometer[J]. Remote Sensing Information, 2009(6): 87−94. doi: 10.3969/j.issn.1000-3177.2009.06.019
|
[5] |
解学通, 郁文贤, 郭丽青, 等. 基于遗传算法的微波散射计海面风矢量反演研究[J]. 海洋通报, 2008, 27(4): 1−11. doi: 10.3969/j.issn.1001-6392.2008.04.001
Xie Xuetong, Yu Wenxian, Guo Liqing, et al. Research on genetic algorithm based ocean surface wind vector retrieval for microwave scatterometer[J]. Marine Science Bulletin, 2008, 27(4): 1−11. doi: 10.3969/j.issn.1001-6392.2008.04.001
|
[6] |
林溢园, 邹巨洪, 何原荣, 等. 我国海洋二号卫星微波散射计数据处理软件设计[J]. 海洋通报, 2016, 35(4): 443−448. doi: 10.11840/j.issn.1001-6392.2016.04.012
Lin Yiyuan, Zou Juhong, He Yuanrong, et al. Design of data processing software for HY-2 satellite microwave scatterometer[J]. Marine Science Bulletin, 2016, 35(4): 443−448. doi: 10.11840/j.issn.1001-6392.2016.04.012
|
[7] |
陈心一, 郝增周, 潘德炉, 等. 中国近海海面风场的时空特征分析[J]. 海洋学研究, 2014, 32(1): 1−10.
Chen Xinyi, Hao Zengzhou, Pan Delu, et al. Analysis of temporal and spatial feature of sea surface wind field in China offshore[J]. Journal of Marine Sciences, 2014, 32(1): 1−10.
|
[8] |
Hung S C, Chang W Y, Tsai W F, et al. Development of high-precision wind, wave and current forecast system for offshore wind energy industry in Taiwan: a two-stage method of numerical simulation and AI correction[J]. Journal of the Chinese Institute of Engineers, 2021, 44(6): 532−543. doi: 10.1080/02533839.2021.1936643
|
[9] |
刘付前, 骆永军, 王超. 基于遥感资料南海月平均风场分析[C]. 2009 航海技术理论研究论文集, [出版地不详: 出版者不详], 2009.
Liu Fuqian, Luo Yongjun, Wang Chao. Analysis of the monthly average wind field in the South China Sea based on remote sensing data [J]. 2009 Research Papers on Navigation Technology Theory, [S.l.: s.n.], 2009.
|
[10] |
唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122. doi: 10.3969/j.issn.1000-3177.2020.01.016
Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122. doi: 10.3969/j.issn.1000-3177.2020.01.016
|
[11] |
冯倩. 多传感器卫星海面风场遥感研究[D]. 青岛: 中国海洋大学, 2004.
Feng Qian. Study of sea surface wind remote sensing by satellite multi-sensor data[D]. Qingdao: Ocean University of China, 2004.
|
[12] |
柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.
Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: National Marine Environmental Forecasting Center, 2018.
|
[13] |
凌征, 王桂华, 陈大可, 等. 中国近海风场融合[C]// 首届中国“数字海洋”论坛. 天津: 国家海洋信息中心, 2008, 90−94.
Ling Zheng, Wang Guihua, Chen Dake, et al. Integration of offshore wind fields in China [C]// The First China “Digital Ocean” Forum. Tianjin: National Maritime Information Centres, 2008, 90−94
|
[14] |
Zhang H M, Reynolds R W, Smith T M. Adequacy of the in situ observing system in the satellite era for climate SST[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(1): 107−120. doi: 10.1175/JTECH1828.1
|
[15] |
Zhang H M, Reynolds R W, Bates J J. P2. 23 blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present[C]//Proceedings of the 14th Conference on Satellite Meteorology and Oceanography. Atlanta, GA: American Meteorological Society 2006 Annual Meeting, 2006, 2.
|
[16] |
齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123. doi: 10.3969/j.issn.1673-8748.2012.03.045
Qi Yalin, Lin Mingsen. Application of the data fusion technique in the HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123. doi: 10.3969/j.issn.1673-8748.2012.03.045
|
[17] |
Yan Q S, Zhang J, Meng J M, et al. Use of an optimum interpolation method to construct a high-resolution global ocean surface vector wind dataset from active scatterometers and passive radiometers[J]. International Journal of Remote Sensing, 2017, 38(20): 5569−5591. doi: 10.1080/01431161.2017.1341665
|
[18] |
Chao Y, Li Z J, Kindle J C, et al. A high-resolution surface vector wind product for coastal oceans: Blending satellite scatterometer measurements with regional mesoscale atmospheric model simulations[J]. Geophysical Research Letters, 2003, 30(1): 13−1−13−4.
|
[19] |
张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.
Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018.
|
[20] |
金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 2019, 45(4): 445−457. doi: 10.7519/j.issn.1000-0526.2019.04.001
Jin Ronghua, Dai Kan, Zhao Ruixia, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China[J]. Meteorological Monthly, 2019, 45(4): 445−457. doi: 10.7519/j.issn.1000-0526.2019.04.001
|
[21] |
陈克海, 解学通, 张金兰, 等. HY-2B卫星散射计海面风场产品质量分析[J]. 热带海洋学报, 2020, 39(6): 30−40.
Chen Kehai, Xie Xuetong, Zhang Jinlan, et al. Accuracy analysis of the retrieved wind from HY-2B scatterometer[J]. Journal of Tropical Oceanography, 2020, 39(6): 30−40.
|
[22] |
黄耀辉, 赵晓磊, 阎诚, 等. 中法海洋卫星及典型应用[J]. 卫星应用, 2020(5): 32−37. doi: 10.3969/j.issn.1674-9030.2020.05.011
Huang Yaohui, Zhao Xiaolei, Yan Cheng, et al. CFOSAT and typical applications[J]. Satellite Application, 2020(5): 32−37. doi: 10.3969/j.issn.1674-9030.2020.05.011
|
[23] |
Shen S S P, Dzikowski P, Li G L, et al. Interpolation of 1961−97 daily temperature and precipitation data onto Alberta polygons of ecodistrict and soil landscapes of Canada[J]. Journal of Applied Meteorology and Climatology, 2001, 40(12): 2162−2177. doi: 10.1175/1520-0450(2001)040<2162:IODTAP>2.0.CO;2
|
[24] |
Hofstra N, Haylock M, New M, et al. Comparison of six methods for the interpolation of daily, European climate data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D21): D21110. doi: 10.1029/2008JD010100
|
[25] |
潘留杰, 薛春芳, 王建鹏, 等. 一个简单的格点温度预报订正方法[J]. 气象, 2017, 43(12): 1584−1593. doi: 10.7519/j.issn.10000526.2017.12.015
Pan Liujie, Xue Chunfang, Wang Jianpeng, et al. A simple grid temperature forecast correction method[J]. Meteorological Monthly, 2017, 43(12): 1584−1593. doi: 10.7519/j.issn.10000526.2017.12.015
|
[26] |
Jones P D, Raper S C B, Bradley R S, et al. Northern hemisphere surface air temperature variations: 1851−1984[J]. Journal of Applied Meteorology and Climatology, 1986, 25(2): 161−179. doi: 10.1175/1520-0450(1986)025<0161:NHSATV>2.0.CO;2
|
[27] |
陈小燕, 杨劲松, 黄韦艮, 等. 多源卫星高度计有效波高数据融合方法研究[J]. 海洋学报, 2009, 31(4): 51−57.
Chen Xiaoyan, Yang Jinsong, Huang Weigen, et al. Research on the fusion methods of significant wave height data from multisatellite altimeters[J]. Haiyang Xuebao, 2009, 31(4): 51−57.
|
[28] |
李彦, 王丽娜, 蒋镇. 一种针对气象要素的空间插值算法[J]. 重庆理工大学学报(自然科学), 2014, 28(6): 94−98, 116.
Li Yan, Wang Li’na, Jiang Zhen. One kind of spatial interpolation algorithm for meteorological elements[J]. Journal of Chongqing University of Technology (Natural Science), 2014, 28(6): 94−98, 116.
|
[29] |
饶莉娟, 王健林, 张星. 不同插值方法对精细化预报产品在青岛地区的检验比较[J]. 中国农学通报, 2020, 36(32): 100−108. doi: 10.11924/j.issn.1000-6850.casb20191000706
Rao Lijuan, Wang Jianlin, Zhang Xing. Different interpolation methods: comparison for refined forecast products in Qingdao area[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 100−108. doi: 10.11924/j.issn.1000-6850.casb20191000706
|
[30] |
肇毓锋, 吴奇. 多时间尺度下Kriging与IDW空间插值方法的适用性研究[J]. 黑龙江水利科技, 2020, 48(11): 9−14. doi: 10.3969/j.issn.1007-7596.2020.11.002
Zhao Yufeng, Wu Qi. Applicability of Kriging and IDW spatial interpolation methods on multiple time scales[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(11): 9−14. doi: 10.3969/j.issn.1007-7596.2020.11.002
|
[31] |
蒋伟达, 孙永福, 刘绍文, 等. 基于IDW的埕岛海域水下三角洲地形演变[J]. 海洋科学进展, 2020, 38(4): 697−707. doi: 10.3969/j.issn.1671-6647.2020.04.013
Jiang Weida, Sun Yongfu, Liu Shaowen, et al. Terrain evolution of subaqueous delta in Chengdao Sea area based on IDW[J]. Advances in Marine Science, 2020, 38(4): 697−707. doi: 10.3969/j.issn.1671-6647.2020.04.013
|
[32] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23−47.
Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 23−47.
|
[33] |
马良玉, 於世磊, 赵尚羽, 等. 基于随机搜索算法优化XGBoost的过热汽温预测模型[J]. 华北电力大学学报(自然科学版), 2021, 48(4): 99−105.
Ma Liangyu, Yu Shilei, Zhao Shangyu, et al. Superheated steam temperature prediction models based on XGBoost optimized with random search algorithm[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(4): 99−105.
|
[34] |
潘进, 丁强, 江爱朋, 等. 基于XGBoost的冷水机组不平衡数据故障诊断[J]. 机械强度, 2021, 43(1): 27−33.
Pan Jin, Ding Qiang, Jiang Aipeng, et al. Fault diagnosis of unbalanced data of chillers based on XGBoost[J]. Journal of Mechanical Strength, 2021, 43(1): 27−33.
|
[35] |
孙晓黎, 马超群, 朱才华. 基于XGBoost的轨道交通短时客流预测精度分析[J]. 交通科技与经济, 2021, 23(1): 54−58.
Sun Xiaoli, Ma Chaoqun, Zhu Caihua. XGBoost-based analysis of prediction accuracy for short-term passenger flow in rail transit[J]. Technology & Economy in Areas of Communications, 2021, 23(1): 54−58.
|
[36] |
Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
|
[37] |
曾晓青, 薛峰, 姚莉, 等. 针对模式风场的格点预报订正方案对比[J]. 应用气象学报, 2019, 30(1): 49−60. doi: 10.11898/1001-7313.20190105
Zeng Xiaoqing, Xue Feng, Yao Li, et al. Comparative study of different error correction methods on model output wind field[J]. Journal of Applied Meteorological Science, 2019, 30(1): 49−60. doi: 10.11898/1001-7313.20190105
|
[38] |
Freilich M H, Dunbar R S. The accuracy of the NSCAT 1 vector winds: comparisons with national data buoy center buoys[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11231−11246. doi: 10.1029/1998JC900091
|
[39] |
王国松, 王喜冬, 侯敏, 等. 基于观测和再分析数据的LSTM深度神经网络沿海风速预报应用研究[J]. 海洋学报, 2020, 42(1): 67−77.
Wang Guosong, Wang Xidong, Hou Min, et al. Research on application of LSTM deep neural network on historical observation data and reanalysis data for sea surface wind speed forecasting[J]. Haiyang Xuebao, 2020, 42(1): 67−77.
|