Citation: | Yu Guo,Zhong Yafeng,Fu Dongyang, et al. Spatiotemporal variations and influencing factors of euphotic depth and primary productivity in the Zhanjiang Bay[J]. Haiyang Xuebao,2022, 44(8):31–41 doi: 10.12284/hyxb2022136 |
[1] |
Wang Shengqiang, Lü Jun, Nie Junwei, et al. Dynamics of euphotic zone depth in the Bohai Sea and Yellow Sea[J]. Science of the Total Environment, 2021, 751: 142270. doi: 10.1016/j.scitotenv.2020.142270
|
[2] |
Häder D P, Williamson C E, Wängberg S Å, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochemical & Photobiological Sciences, 2015, 14(1): 108−126.
|
[3] |
Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems[M]. Cambridge: Cambridge University Press, 1994.
|
[4] |
周远洋. 程海真光层深度与浮游植物初级生产力的时空特征解析[D]. 昆明: 云南大学, 2017.
Zhou Yuanyang. Analysis on the temporal-spatial characteristics of euphotic depth and primary production of phytoplankton in lake Chenghai[D]. Kunming: Yunnan University, 2017.
|
[5] |
DeVries T, Weber T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations[J]. Global Biogeochemical Cycles, 2017, 31(3): 535−555. doi: 10.1002/2016GB005551
|
[6] |
Chang G C, Dickey T D. Coastal ocean optical influences on solar transmission and radiant heating rate[J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01020.
|
[7] |
Luhtala H, Tolvanen H, Kalliola R. Annual spatio-temporal variation of the euphotic depth in the SW-Finnish archipelago, Baltic Sea[J]. Oceanologia, 2013, 55(2): 359−373. doi: 10.5697/oc.55-2.359
|
[8] |
Smale D A, Pessarrodona A, King N, et al. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the Northeast Atlantic[J]. Scientific Reports, 2020, 10(1): 12161. doi: 10.1038/s41598-020-69238-x
|
[9] |
Lalli C M, Parsons T R. Biological Oceanography: An Introduction[M]. 2nd ed. Amsterdam: Elsevier, 1997.
|
[10] |
Yoshikawa T, Tomizawa K, Okamoto Y, et al. Nutrients, light and phytoplankton production in the shallow, tropical coastal waters of Bandon Bay, southern Thailand[J]. Marine Ecology, 2017, 38(6): e12475. doi: 10.1111/maec.12475
|
[11] |
Ogbuagu D H, Nwahiri U O, Osuebi E C, et al. Investigating temperature and nutrients as drivers of primary productivity in aquatic environment[J]. Journal of Geoscience and Environment Protection, 2019, 7(7): 92−107. doi: 10.4236/gep.2019.77008
|
[12] |
Zhou Qichao, Zhang Yunlin, Li Kaidi, et al. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China[J]. Journal of Environmental Sciences, 2018, 72: 185−197. doi: 10.1016/j.jes.2018.01.005
|
[13] |
Zhang Peng, Xu Jialei, Zhang Jibiao, et al. Spatiotemporal dissolved silicate variation, sources, and behavior in the eutrophic Zhanjiang Bay, China[J]. Water, 2020, 12(12): 3586. doi: 10.3390/w12123586
|
[14] |
Zhang Jibiao, Zhang Yanchan, Zhang Peng, et al. Seasonal phosphorus variation in coastal water affected by the land-based sources input in the eutrophic Zhanjiang Bay, China[J]. Estuarine, Coastal and Shelf Science, 2021, 252: 107277. doi: 10.1016/j.ecss.2021.107277
|
[15] |
Fu Dongyang, Zhong Yafeng, Chen Fajin, et al. Analysis of dissolved oxygen and nutrients in Zhanjiang Bay and the adjacent sea area in spring[J]. Sustainability, 2020, 12(3): 889. doi: 10.3390/su12030889
|
[16] |
Zhang Jibiao, Zhou Fengxia, Chen Chunliang, et al. Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China[J]. PLoS ONE, 2018, 13(8): e0201414. doi: 10.1371/journal.pone.0201414
|
[17] |
Li Jiacheng, Chen Fajin, Zhang Shuwen, et al. Origin of the particulate organic matter in a monsoon-controlled bay in southern China[J]. Journal of Marine Science and Engineering, 2021, 9(5): 541. doi: 10.3390/jmse9050541
|
[18] |
Li Jiacheng, Cao Ruixue, Lao Qibin, et al. Assessing seasonal nitrate contamination by nitrate dual isotopes in a monsoon-controlled bay with intensive human activities in South China[J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1921. doi: 10.3390/ijerph17061921
|
[19] |
Wang Shuangling, Zhou Fengxia, Chen Fajin, et al. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: a case study of Zhanjiang Bay, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(4): 2089. doi: 10.3390/ijerph18042089
|
[20] |
国家海洋局908专项办公室. 海洋光学调查技术规程[M]. 北京: 海洋出版社, 2006.
Special Office of the State Oceanic Administration. Marine Optical Investigation Procedures[M]. Beijing: China Ocean Press, 2006.
|
[21] |
Shang Yingxin, Song Kaishan, Wen Zhidan, et al. Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China[J]. Environmental Science and Pollution Research, 2018, 25(16): 16009−16023. doi: 10.1007/s11356-018-1832-6
|
[22] |
马建行. 东北地区典型湖库Kd(PAR)与真光层深度遥感反演[D]. 长春: 中国科学院东北地理与农业生态研究所, 2016.
Ma Jianhang. Inversion of Kd(PAR) and euphotic zone depth of typical water bodys in Northeast China with remote imagery[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016.
|
[23] |
Huovinen P S, Penttilä H, Soimasuo M R. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland[J]. Chemosphere, 2003, 51(3): 205−214. doi: 10.1016/S0045-6535(02)00634-3
|
[24] |
Behrenfeld M J, Falkowski P G. A consumer’s guide to phytoplankton primary productivity models[J]. Limnology and Oceanography, 1997, 42(7): 1479−1491. doi: 10.4319/lo.1997.42.7.1479
|
[25] |
郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报, 2007, 29(3): 58−68.
Hao Qiang, Ning Xiuren, Liu Chenggang, et al. Satellite and in situ observations of primary production in the northern South China Sea[J]. Haiyang Xuebao, 2007, 29(3): 58−68.
|
[26] |
Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1−20. doi: 10.4319/lo.1997.42.1.0001
|
[27] |
高姗. 基于遥感的南海初级生产力时空变化特征与环境影响因素研究[D]. 北京: 中国气象科学研究院, 2008.
Gao Shan. Spatial and temporal distribution of ocean primary productivity and its relation with oceanic environments in the South China Sea based on remote sensing[D]. Beijing: Chinese Academy of Meteorological Sciences, 2008.
|
[28] |
Mayora G, Devercelli M. Spatio-temporal variability in underwater light climate in a turbid river-floodplain system: driving factors and estimation using Secchi disc[J]. River Research and Applications, 2019, 35(6): 566−576.
|
[29] |
Zhou Hong, Fang Fang, Li Zhe, et al. Spatiotemporal variations in euphotic depth and their correlation with influencing factors in a tributary of the Three Gorges Reservoir[J]. Water and Environment Journal, 2014, 28(2): 233−241. doi: 10.1111/wej.12031
|
[30] |
Quang N H, Sasaki J, Higa H, et al. Spatiotemporal variation of turbidity based on landsat 8 OLI in cam ranh bay and thuy trieu lagoon, vietnam[J]. Water, 2017, 9(8): 570. doi: 10.3390/w9080570
|
[31] |
Briciu-Burghina C, Sullivan T, Chapman J, et al. Continuous high-frequency monitoring of estuarine water quality as a decision support tool: a Dublin Port case study[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5561−5580. doi: 10.1007/s10661-014-3803-9
|
[32] |
余果, 廖珊, 付东洋, 等. 湛江港湾及邻近海域有色溶解有机物光谱吸收特性分析[J]. 广东海洋大学学报, 2017, 37(4): 123−127. doi: 10.3969/j.issn.1673-9159.2017.04.019
Yu Guo, Liao Shan, Fu Dongyang, et al. Optical characteristics of colored dissolved organic matter in Zhanjiang Bay and its adjacent sea areas[J]. Journal of Guangdong Ocean University, 2017, 37(4): 123−127. doi: 10.3969/j.issn.1673-9159.2017.04.019
|
[33] |
Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248−258. doi: 10.1016/j.ecss.2011.04.003
|
[34] |
Ichikawa H, Beardsley R C. The current system in the Yellow and East China Seas[J]. Journal of Oceanography, 2002, 58(1): 77−92. doi: 10.1023/A:1015876701363
|
[35] |
Tsai A Y, Gong G C, Chung C C, et al. Different impact of nanoflagellate grazing and viral lysis on Synechococcus spp. and picoeukaryotic mortality in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 1−6. doi: 10.1016/j.ecss.2018.05.012
|
[36] |
张才学, 龚玉艳, 孙省利. 湛江港湾潜在赤潮生物的时空分布及其影响因素[J]. 生态学杂志, 2012, 31(7): 1763−1770.
Zhang Caixue, Gong Yuyan, Sun Xingli. Spatiotemporal distribution and related affecting factors of red tide latent organisms in Zhanjiang Bay, Guangdong Province of South China[J]. Chinese Journal of Ecology, 2012, 31(7): 1763−1770.
|
[37] |
Falkowski P G. Light-shade adaptation in marine phytoplankton[M]//Falkowski P G. Primary Productivity in the Sea. Boston: Springer, 1980.
|
[38] |
Goldman J C. Book Review: marine photosynthesis (with special emphasis on the ecological aspects)[J]. Earth Science Reviews, 1977, 13(1): 79.
|
[39] |
Justić D, Rabalais N N, Turner R E. Stoichiometric nutrient balance and origin of coastal eutrophication[J]. Marine Pollution Bulletin, 1995, 30(1): 41−46. doi: 10.1016/0025-326X(94)00105-I
|
[40] |
Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1483−1489. doi: 10.1016/j.csr.2007.02.009
|
[41] |
Zhou Yuping, Zhang Yanming, Li Fangfang, et al. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea[J]. Science of the Total Environment, 2017, 574: 499−508. doi: 10.1016/j.scitotenv.2016.09.092
|