Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Sun Yi,Shi Xuefa,Yan Quanshu, et al. The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin[J]. Haiyang Xuebao,2022, 44(11):42–62 doi: 10.12284/hyxb2022135
Citation: Sun Yi,Shi Xuefa,Yan Quanshu, et al. The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin[J]. Haiyang Xuebao,2022, 44(11):42–62 doi: 10.12284/hyxb2022135

The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin

doi: 10.12284/hyxb2022135
  • Received Date: 2022-03-14
  • Rev Recd Date: 2022-05-25
  • Available Online: 2022-08-01
  • Publish Date: 2022-11-03
  • In this paper, sediment smear observations, X-ray diffraction analyses, major, trace and rare earth elements analyses, and in situ micro zone geochemical analyses of single minerals were carried out on samples of core GC02 and GC06 from the rare earth-rich deep-sea sediments in the Central Indian Ocean Basin to explore their geochemical characteristics, material sources and enrichment mechanisms of rare earth elements (REY). The results show that the sediment types of core GC02 are calcareous clay and zeolitic clay, and the sediment types of core GC06 are calcareous clay, zeolite-bearing clay and zeolitic clay. Rare earth elements are enriched in zeolite-bearing clays and zeolitic clays. The North American Shale Composite (NASC) Standardized patterns of REY in the sediments indicate a possible seawater origin. Mineralogical and geochemical signatures indicate that the terrestrial fraction of these sediments in the study area should be the eolian dust material originated primarily from Australian. Elemental correlations and CaO/P2O5 ratios indicate that the main host mineral of REY in REY-rich deep-sea sediments is bioapatite (fish teeth/bone), followed by Fe-Mn micronodule. This study summarizes and discusses the formation mechanism of REY-rich sediments and improves a conceptual model for the formation process of REY-rich sediments.
  • loading
  • [1]
    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185
    [2]
    黄牧. 太平洋深海沉积物稀土元素地球化学特征及资源潜力初步研究[D]. 青岛: 国家海洋局第一海洋研究所, 2013.

    Huang Mu. Preliminary study on geochemical characteristics and resource potential of rare earth elements in Pacific deep-sea sediments[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2013.
    [3]
    黄牧, 刘季花, 石学法, 等. 东太平洋CC区沉积物稀土元素特征及物源[J]. 海洋科学进展, 2014, 32(2): 175−187. doi: 10.3969/j.issn.1671-6647.2014.02.007

    Huang Mu, Liu Jihua, Shi Xuefa, et al. Geochemical characteristics and material sources of rare earth elements in sediments from the CC area in the eastern Pacific Ocean[J]. Advances in Marine Science, 2014, 32(2): 175−187. doi: 10.3969/j.issn.1671-6647.2014.02.007
    [4]
    黄牧, 石学法, 刘季花, 等. 太平洋表层沉积物中δCe特征探讨[J]. 矿物学报, 2015(S1): 762−763.

    Huang Mu, Shi Xuefa, Liu Jihua, et al. The characteristics of δCe in Pacific surface sediments[J]. Acta Mineralogica Sinica, 2015(S1): 762−763.
    [5]
    黄牧, 石学法, 毕东杰, 等. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报, 2021, 31(10): 2665−2681. doi: 10.11817/j.ysxb.1004.0609.2021-37993

    Huang Mu, Shi Xuefa, Bi Dongjie, et al. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2665−2681. doi: 10.11817/j.ysxb.1004.0609.2021-37993
    [6]
    张霄宇, 邓涵, 张富元, 等. 西太平洋海山区深海软泥中稀土元素富集的地球化学特征[J]. 中国稀土学报, 2013, 31(6): 729−737. doi: 10.11785/S1000-4343.20130614

    Zhang Xiaoyu, Deng Han, Zhang Fuyuan, et al. Enrichment and geochemical characteristics of rare earth elements in deep-sea mud from seamount area of western Pacific[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(6): 729−737. doi: 10.11785/S1000-4343.20130614
    [7]
    任江波, 姚会强, 傅飘儿, 等. 深海富稀土泥的发现及其成矿规律[J]. 矿床地质, 2014, 33(S1): 123−124.

    Ren Jiangbo, Yao Huiqiang, Fu Piaoer, et al. Discovery and metallogenic regularity of rare earth-rich mud in deep sea[J]. Mineral Deposits, 2014, 33(S1): 123−124.
    [8]
    朱克超, 任江波, 王海峰. 太平洋中部富REY深海沉积物的地球化学特征及化学分类[J]. 地球学报, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04

    Zhu Kechao, Ren Jiangbo, Wang Haifeng. Geochemical characteristics and chemical classification of REY-rich pelagic sediments from the Central Pacific Ocean[J]. Acta Geoscientia Sinica, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04
    [9]
    王汾连. 太平洋深海粘土的REE和Nd同位素特征及物源意义[J]. 地质论评, 2017, 63(S1): 201−202.

    Wang Fenlian. The characteristics of REE and Nd isotopes and their provenance significance of the pelagic sediments from the Pacific Ocean[J]. Geological Review, 2017, 63(S1): 201−202.
    [10]
    Zhou T, Shi X, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330
    [11]
    Bi Dongjie, Shi Xuefa, Huang Mu, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318
    [12]
    黄大松, 张霄宇. 中印度洋洋盆深海沉积泥的稀土元素载体和来源[J]. 矿物学报, 2015, 35(S1): 761.

    Huang Dasong, Zhang Xiaoyu. Rare earth element carriers and sources of deep-sea sedimentary mud in the Central Indian Ocean Basin[J]. Acta Mineralogica Sinica, 2015, 35(S1): 761.
    [13]
    朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学−中国地质大学学报, 2015, 40(6): 1052−1060. doi: 10.3799/dqkx.2015.087

    Zhu Kechao, Ren Jiangbo, Wang Haifeng, et al. Enrichment mechanism of REY and geochemical characteristics of REY-rich pelagic clay from the central Pacific[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(6): 1052−1060. doi: 10.3799/dqkx.2015.087
    [14]
    王汾连, 何高文, 孙晓明, 等. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7): 2057−2068.

    Wang Fenlian, He Gaowen, Sun Xiaoming, et al. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057−2068.
    [15]
    王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4): 67−75.

    Wang Fenlian, He Gaowen, Wang Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67−75.
    [16]
    王汾连, 何高文, 姚会强, 等. 深海沉积物中的稀土矿产资源研究进展[J]. 中国地质, 2017, 44(3): 449−459. doi: 10.12029/gc20170304

    Wang Fenlian, He Gaowen, Yao Huiqiang, et al. The progress in the study of REE-rich deep-sea sediments[J]. Geology in China, 2017, 44(3): 449−459. doi: 10.12029/gc20170304
    [17]
    石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3): 195−208.

    Shi Xuefa, Bi Dongjie, Huang Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195−208.
    [18]
    方明山, 石学法, 肖仪武, 等. 太平洋深海沉积物中稀土矿物的分布特征研究[J]. 矿冶, 2016, 25(5): 81−84. doi: 10.3969/j.issn.1005-7854.2016.05.019

    Fang Mingshan, Shi Xuefa, Xiao Yiwu, et al. Research on distribution characteristics of rare earth mineral of deep sea sediments in the Pacific Ocean[J]. Mining and Metallurgy, 2016, 25(5): 81−84. doi: 10.3969/j.issn.1005-7854.2016.05.019
    [19]
    Sa Rina, Sun Xiaoming, He Gaowen, et al. Enrichment of rare earth elements in siliceous sediments under slow deposition: a case study of the central North Pacific[J]. Ore Geology Reviews, 2018, 94: 12−23. doi: 10.1016/j.oregeorev.2018.01.019
    [20]
    Liao Jianlin, Sun Xiaoming, Wu Zhongwei, et al. Fe-Mn (oxyhydr) oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific[J]. Ore Geology Reviews, 2019, 112: 103044. doi: 10.1016/j.oregeorev.2019.103044
    [21]
    尹延鸿, 孙嘉诗, 侯贵卿, 等. 东太平洋573孔始新世末渐新世初地层特征及稀土元素地球化学[J]. 吉林大学学报(地球科学版), 2002, 32(1): 29−33.

    Yin Yanhong, Sun Jiashi, Hou Guiqing, et al. The characteristics and REEs geochemistry in the strata from late Eocene to early Oligocene in Site 573, the eastern Pacific[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(1): 29−33.
    [22]
    刘季花. 太平洋东部深海沉积物稀土元素地球化学[J]. 海洋地质与第四纪地质, 1992, 12(2): 33−42.

    Liu Jihua. Geochemistry of REE of deep sea sediments in the East Pacific Ocean[J]. Marine Geology & Quaternary Geology, 1992, 12(2): 33−42.
    [23]
    Liao Jianlin, Sun Xiaoming, Li Dengfeng, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58−68. doi: 10.1016/j.chemgeo.2019.02.039
    [24]
    Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005
    [25]
    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621−635. doi: 10.2343/geochemj.2.0361
    [26]
    Das P, Iyer S D, Hazra S. Petrological characteristics and genesis of the Central Indian Ocean Basin basalts[J]. Acta Geologica Sinica, 2012, 86(5): 1154−1170. doi: 10.1111/j.1755-6724.2012.00738.x
    [27]
    Dutkiewicz A, Müller R D, O’Callaghan S, et al. Census of seafloor sediments in the world’s ocean[J]. Geology, 2015, 43(9): 795−798. doi: 10.1130/G36883.1
    [28]
    Nath B N, Roelandts I, Sudhakar M, et al. Rare earth element patterns of the Central Indian Basin sediments related to their lithology[J]. Geophysical Research Letters, 1992, 19(12): 1197−1200. doi: 10.1029/92GL01243
    [29]
    Mudholkar A V, Pattan J N, Parthiban G. Geochemistry of deep-sea sediment cores from the Central Indian Ocean Basin[J]. Indian Journal of Marine Sciences, 1993, 22(4): 241−246.
    [30]
    Jauhari P, Iyer S D. A comprehensive view of manganese nodules and volcanics of the Central Indian Ocean Basin[J]. Marine Georesources & Geotechnology, 2008, 26(4): 231−258.
    [31]
    Borole D V. Late pleistocene sedimentation: a case study of the central Indian Ocean Basin[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(4): 761−775. doi: 10.1016/0967-0637(93)90070-J
    [32]
    Schott F A, McCreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1−123. doi: 10.1016/S0079-6611(01)00083-0
    [33]
    Maher B A, Prospero J M, Mackie D, et al. Global connections between Aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010, 99(1/2): 61−97.
    [34]
    Rothwell R G. Minerals and Mineraloids in Marine Sediments: An Optical Identification Guide[M]. Dordrecht: Springer, 1989.
    [35]
    Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. GSA Bulletin, 1965, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
    [36]
    Gao Jingjing, Liu Jihua, Li Xianguo, et al. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method[J]. Acta Oceanologica Sinica, 2017, 36(1): 109−117. doi: 10.1007/s13131-017-0991-5
    [37]
    Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9
    [38]
    Boskey A L. Mineralization of bones and teeth[J]. Elements, 2007, 3(6): 385−391. doi: 10.2113/GSELEMENTS.3.6.385
    [39]
    刘季花. 判别海洋沉积物物质来源的几种地球化学标志[J]. 海洋地质动态, 1994(1): 1−3.

    Liu Jihua. Several geochemical signatures to distinguish the origin of marine sediment materials[J]. Marine Geology Frontiers, 1994(1): 1−3.
    [40]
    刘季花. 东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义[D]. 青岛: 中国科学院海洋研究所, 2004: 1−100.

    Liu Jihua. The geochemistry of REEs and Nd isotope in deep-sea sediments from the eastern Pacific and their geological implications[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2004: 1−100.
    [41]
    Chamley H. Clay Sedimentology[M]. Berlin: Springer, 1989: 269−280.
    [42]
    邱忠荣, 马维林, 张霄宇, 等. 西北太平洋表层沉积物地球化学特征及其物源指示意义[J]. 浙江大学学报(理学版), 2020, 47(3): 345−354, 369.

    Qiu Zhongrong, Ma Weilin, Zhang Xiaoyu, et al. Geochemical characteristics of surface sediments in Northwest Pacific and their indication of material sources[J]. Journal of Zhejiang University (Science Edition), 2020, 47(3): 345−354, 369.
    [43]
    李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3): 51−56.

    Li Shuanglin, Li Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(3): 51−56.
    [44]
    Hovan S A, Rea D K. The Cenozoic record of continental mineral deposition on Broken and Ninetyeast Ridges, Indian Ocean: southern African aridity and sediment delivery from the Himalayas[J]. Paleoceanography, 1992, 7(6): 833−860. doi: 10.1029/92PA02176
    [45]
    于淼, 石学法, 李传顺, 等. 中印度洋海盆富稀土沉积物物质来源[C]//中国矿物岩石地球化学学会第17届学术年会论文集. 杭州: 中国矿物岩石地球化学学会, 2019.

    Yu Miao, Shi Xuefa, Li Chuanshun, et al. Sources of rare earth-rich sediments in the central Indian Ocean Basin[C]//Abstracts of the 17th Annual Academic Conference of the Chinese Society of Mineralogy, Petrology and Geochemistry. Hangzhou: CSMPG, 2019.
    [46]
    Ringrose S, Harris C, Huntsman-Mapila P, et al. Origins of strandline duricrusts around the Makgadikgadi Pans (Botswana Kalahari) as deduced from their chemical and isotope composition[J]. Sedimentary Geology, 2009, 219(1/4): 262−279.
    [47]
    Douglas G B, Hart B T, Beckett R, et al. Geochemistry of suspended particulate matter (SPM) in the Murray-Darling River system: a conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements[J]. Aquatic Geochemistry, 1999, 5(2): 167−194. doi: 10.1023/A:1009632310689
    [48]
    Emmel F J, Curray J R. The Bengal submarine fan, northeastern Indian Ocean[J]. Geo-Marine Letters, 1983, 3(2/4): 119−124.
    [49]
    Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima Area, Southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026
    [50]
    Yu Miao, Shi Xuefa, Huang Mu, et al. The transfer of rare earth elements during early diagenesis in REY-rich sediments: an example from the Central Indian Ocean Basin[J]. Ore Geology Reviews, 2021, 136: 104269. doi: 10.1016/j.oregeorev.2021.104269
    [51]
    张霄宇, 黄牧, 石学法, 等. 中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征[J]. 海洋学报, 2019, 41(12): 51−61.

    Zhang Xiaoyu, Huang Mu, Shi Xuefa, et al. The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin[J]. Haiyang Xuebao, 2019, 41(12): 51−61.
    [52]
    Sha L K, Chappell B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861−3881. doi: 10.1016/S0016-7037(99)00210-0
    [53]
    Nemliher J G, Baturin G N, Kallaste T E, et al. Transformation of hydroxyapatite of bone phosphate from the ocean bottom during fossilization[J]. Lithology and Mineral Resources, 2004, 39(5): 468−479. doi: 10.1023/B:LIMI.0000040736.62014.2d
    [54]
    Nakamura K, Kato Y, Tamaki K, et al. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction[J]. Marine Geology, 2007, 239(3/4): 125−141.
    [55]
    Marx S K, Kamber B S. Trace-element systematics of sediments in the Murray-Darling Basin, Australia: sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity[J]. Applied Geochemistry, 2010, 25(8): 1221−1237. doi: 10.1016/j.apgeochem.2010.05.007
    [56]
    Abbott A N, Haley B A, McManus J, et al. The sedimentary flux of dissolved rare earth elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186−200. doi: 10.1016/j.gca.2015.01.010
    [57]
    Nozaki Y, Alibo D S. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean[J]. Earth and Planetary Science Letters, 2003, 205(3/4): 155−172.
    [58]
    Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1−15. doi: 10.2343/geochemj.41.1
    [59]
    Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific[J]. Geophysical Research Letters, 1994, 21(24): 2677−2680. doi: 10.1029/94GL02404
    [60]
    Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329−340.
    [61]
    Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123−131.
    [62]
    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7
    [63]
    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
    [64]
    Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175−197. doi: 10.1016/0048-9697(86)90239-1
    [65]
    Grandjean P, Cappetta H, Michard A, et al. The assessment of REE patterns and 143Nd/144Nd ratios in fish remains[J]. Earth and Planetary Science Letters, 1987, 84(2/3): 181−196.
    [66]
    Chen Jianbo, Algeo T J, Zhao Laishi, et al. Diagenetic uptake of rare earth elements by Bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181−202. doi: 10.1016/j.earscirev.2015.01.013
    [67]
    Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule[J]. American Mineralogist, 2014, 99(10): 2068−2083. doi: 10.2138/am-2014-4742
    [68]
    Atkins A L, Shaw S, Peacock C L. Nucleation and growth of todorokite from birnessite: implications for trace-metal cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 144: 109−125. doi: 10.1016/j.gca.2014.08.014
    [69]
    Atkins A L, Shaw S, Peacock C L. Release of Ni from birnessite during transformation of birnessite to todorokite: implications for Ni cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 189: 158−183. doi: 10.1016/j.gca.2016.06.007
    [70]
    Liu Yuwei, Li Yan, Chen Ning, et al. Cu(II) sorption by biogenic birnessite produced by Pseudomonas putida strain MnB1: structural differences from abiotic birnessite and its environmental implications[J]. CrystEngComm, 2018, 20(10): 1361−1374. doi: 10.1039/C7CE02168B
    [71]
    Li Dengfeng, Fu Yu, Liu Qiaofen, et al. High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility[J]. Gondwana Research, 2020, 81: 461−474. doi: 10.1016/j.gr.2019.12.009
    [72]
    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87: 3−15. doi: 10.1016/j.oregeorev.2016.09.003
    [73]
    Bonatti E, Kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[C]//Ferromanganese Deposits on the sea Floor. New York: Arden House, 1972.
    [74]
    Ohta J, Yasukawa K, Machida S, et al. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: implications from mineralogy and grain size distributions[J]. Geochemical Journal, 2016, 50(6): 591−603. doi: 10.2343/geochemj.2.0435
    [75]
    Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8(1): 5763. doi: 10.1038/s41598-018-23948-5
    [76]
    Tanaka E, Nakamura K, Yasukawa K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: implications for genesis of mud highly enriched in rare-earth elements and yttrium[J]. Ore Geology Reviews, 2020, 119: 103392. doi: 10.1016/j.oregeorev.2020.103392
    [77]
    邓义楠, 任江波, 郭庆军, 等. 太平洋西部富稀土深海沉积物的地球化学特征及其指示意义[J]. 岩石学报, 2018, 34(3): 733−747.

    Deng Yi’nan, Ren Jiangbo, Guo Qingjun, et al. Geochemistry characteristics of REY-rich sediment from deep sea in western Pacific, and their indicative significance[J]. Acta Petrologica Sinica, 2018, 34(3): 733−747.
    [78]
    Van Andel T H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments[J]. Earth and Planetary Science Letters, 1975, 26(2): 187−194. doi: 10.1016/0012-821X(75)90086-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(9)

    Article views (533) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return