Citation: | Xia Ronglin,Ning Zhiming,Yu Kefu, et al. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao,2022, 44(8):23–30 doi: 10.12284/hyxb2022128 |
[1] |
Muhando C A, Lanshammar F. Ecological effects of the crown-of-thorns starfish removal programme on Chumbe Island Coral Park, Zanzibar, Tanzania[C]//Proceedings of the 11th International Coral Reef Symposium. Fort Lauderdale: [s.n.], 2008: 1127–1131.
|
[2] |
Caballes C F, Pratchett M S, Morgan S. Reproductive biology and early life history of the crown-of-thorns starfish[M]//Whitmore E. Echinoderms: Ecology, Habitats and Reproductive Biology. New York, USA: Nova Science Publishers, 2014: 101–146.
|
[3] |
Pratchett M S, Caballes C F, Rivera-Posada J, et al. Limits to understanding and managing outbreaks of crown-of-thorns starfishes (Acanthaster spp.)[M]//Hughes R, Hughes D, Smith I. Oceanography and Marine Biology: An Annual Review. Boca Raton, FL: CRC Press, 2014: 133–200.
|
[4] |
De’ath G, Fabricius K E, Sweatman H, et al. The 27-year decline of coral cover on the Great Barrier Reef and its causes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17995−17999. doi: 10.1073/pnas.1208909109
|
[5] |
Wilson S K, Graham N A J, Pratchett M S, et al. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?[J]. Global Change Biology, 2006, 12(11): 2220−2234. doi: 10.1111/j.1365-2486.2006.01252.x
|
[6] |
Larkum A W D. High rates of nitrogen fixation on coral skeletons after predation by the crown of thorns starfish Acanthaster planci[J]. Marine Biology, 1988, 97(4): 503−506. doi: 10.1007/BF00391046
|
[7] |
Munday P L. Habitat loss, resource specialization, and extinction on coral reefs[J]. Global Change Biology, 2004, 10(10): 1642−1647. doi: 10.1111/j.1365-2486.2004.00839.x
|
[8] |
Brodie J, Fabricius K, De’ath G, et al. Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence[J]. Marine Pollution Bulletin, 2005, 51(1−4): 266−278. doi: 10.1016/j.marpolbul.2004.10.035
|
[9] |
Fabricius K E, Okaji K, De’ath G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation[J]. Coral Reefs, 2010, 29(3): 593−605. doi: 10.1007/s00338-010-0628-z
|
[10] |
姚秋翠, 余克服, 廖芝衡, 等. 棘冠海星及其对珊瑚礁的生态影响研究进展[J]. 生态学报, 2022, doi: 10.5846/stxb202107312078.
Yao Qiucui, Yu Kefu, Liao Zhiheng, et al. A review of research on crown-of-thorns starfish and their ecological effects on coral reefs[J]. Acta Ecologica Sinica, 2022, doi: 10.5846/stxb202107312078.
|
[11] |
Keesing J K, Halford A R. Field measurement of survival rates of juvenile Acanthaster planci: techniques and preliminary results[J]. Marine Ecology Progress Series, 1992, 85(1/2): 107−114.
|
[12] |
Ciarapica G, Passeri L. An overview of the maldivian coral reefs in Felidu and North Malé atoll (Indian Ocean): platform drowning by ecological crises[J]. Facies, 1993, 28(1): 33−65. doi: 10.1007/BF02539727
|
[13] |
Cowan Z L, Pratchett M, Messmer V, et al. Known predators of crown-of-thorns starfish (Acanthaster spp. ) and their role in mitigating, if not preventing, population outbreaks[J]. Diversity, 2017, 9(1): 7. doi: 10.3390/d9010007
|
[14] |
邓华健. 渤海湾沉积物–水界面营养盐交换通量的研究[D]. 天津: 天津大学, 2004.
Deng Huajian. The study on the exchange fluxes of nutrients at the sediment-water interface in Bohai Bay[D]. Tianjin: Tianjin University, 2004.
|
[15] |
方鑫. 海州湾海洋牧场沉积物–水界面营养盐交换特性及生物扰动作用的研究[D]. 上海: 上海海洋大学, 2018.
Fang Xin. The exchange characteristics of nutrients and the bioturbation effects at the sediment-water interface in the marine ranching area of Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2018.
|
[16] |
Biles C L, Paterson D M, Ford R B, et al. Bioturbation, ecosystem functioning and community structure[J]. Hydrology and Earth System Sciences, 2002, 6(6): 999−1005. doi: 10.5194/hess-6-999-2002
|
[17] |
张小勇. 黄、东海陆架沉积物中氮、磷的形态分布及与浮游植物的关系[D]. 青岛: 中国海洋大学, 2013.
Zhang Xiaoyong. The distribution of nitrogen, phosphorus forms and the relationship with the total phytoplankton in the Yellow Sea and the East China Sea continental shelf[D]. Qingdao: Ocean University of China, 2013.
|
[18] |
Reckhardt A, Beck M, Seidel M, et al. Carbon, nutrient and trace metal cycling in sandy sediments: a comparison of high-energy beaches and backbarrier tidal flats[J]. Estuarine, Coastal and Shelf Science, 2015, 159: 1−14. doi: 10.1016/j.ecss.2015.03.025
|
[19] |
Furnas M, Alongi D, McKinnon D, et al. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem[J]. Continental Shelf Research, 2011, 31(19/20): 1967−1990.
|
[20] |
Ning Zhiming, Yu Kefu, Wang Yinghui, et al. Carbon and nutrient dynamics of permeable carbonate and silicate sands adjacent to coral reefs around Weizhou Island in the northern South China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 225: 106229. doi: 10.1016/j.ecss.2019.05.011
|
[21] |
宋金明, 李鹏程. 南沙群岛海域沉积物–海水界面间营养物质的扩散通量[J]. 海洋科学, 1996(5): 43−50.
Song Jinming, Li Pengcheng. Studies on characteristics of nutrient diffusion fluxes across sediment-water interface in the district of Nansha Islands, South China Sea[J]. Marine Sciences, 1996(5): 43−50.
|
[22] |
李元超, 吴钟解, 梁计林, 等. 近15年西沙群岛长棘海星暴发周期及暴发原因分析[J]. 科学通报, 2019, 64(33): 3478−3484.
Li Yuanchao, Wu Zhongjie, Liang Jilin, et al. Analysis on the outbreak period and cause of Acanthaster planci in Xisha Islands in recent 15 years[J]. Chinese Science Bulletin, 2019, 64(33): 3478−3484.
|
[23] |
Ning Zhiming, Liu Sumei, Zhang Guoling, et al. Impacts of an integrated multi-trophic aquaculture system on benthic nutrient fluxes: a case study in Sanggou Bay, China[J]. Aquaculture Environment Interactions, 2016, 8: 221−232. doi: 10.3354/aei00144
|
[24] |
Guo Jing, Yu Kefu, Wang Yinghui, et al. Potential impacts of anthropogenic nutrient enrichment on coral reefs in the South China Sea: evidence from nutrient and chlorophyll a levels in seawater[J]. Environmental Science: Processes & Impacts, 2019, 21(10): 1745−1753.
|
[25] |
陈露. 南沙、西沙群岛海域营养盐对浮游植物生长的影响[D]. 上海: 上海海洋大学, 2015.
Chen Lu. Effects of nutrient on phytoplankton growth in the waters of the Nansha and Xisha Islands[D]. Shanghai: Shanghai Ocean University, 2015.
|
[26] |
Heil C A, Revilla M, Glibert P M, et al. Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf[J]. Limnology and Oceanography, 2007, 52(3): 1067−1078. doi: 10.4319/lo.2007.52.3.1067
|
[27] |
Lucas J S. Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L. )[J]. Journal of Experimental Marine Biology & Ecology, 1982, 65(2): 173−193.
|
[28] |
Brainard R, Maragos J, Schroeder R, et al. The state of coral reef ecosystems of the U. S. Pacific remote island areas[C]. Honolulu: NOAA Technical Memorandum NOS NCCOS, 2005: 338–372.
|
[29] |
Houk P, Bograd S, van Woesik R. The transition zone chlorophyll front can trigger Acanthaster planci outbreaks in the Pacific Ocean: historical confirmation[J]. Journal of Oceanography, 2007, 63(1): 149−154. doi: 10.1007/s10872-007-0013-x
|
[30] |
郑珍珍. 海洋氨氧化过程对温度的响应[D]. 厦门: 厦门大学, 2018.
Zheng Zhenzhen. The thermal response of marine ammonia oxidation[D]. Xiamen: Xiamen University, 2018.
|
[31] |
Daims H, Lebedeva E, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504−509. doi: 10.1038/nature16461
|
[32] |
Van Kessel M A H J, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555−559. doi: 10.1038/nature16459
|
[33] |
Smith J M, Chavez F P, Francis C A. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean[J]. PLoS One, 2014, 9(9): e108173. doi: 10.1371/journal.pone.0108173
|
[34] |
Slomp C P, Malschaert J F P, van Raaphorst W. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments[J]. Limnology and Oceanography, 1998, 43(5): 832−846. doi: 10.4319/lo.1998.43.5.0832
|
[35] |
何其江, 刘刚, 王雪木, 等. 西沙群岛宣德环礁的精细水下地貌组合特征及其成因机制[J]. 海洋学报, 2021, 43(8): 81−92.
He Qijiang, Liu Gang, Wang Xuemu, et al. Submarine geomorphologic features and genetic mechanism in the Xuande Atoll, Xisha Islands[J]. Haiyang Xuebao, 2021, 43(8): 81−92.
|
[36] |
李亮, 何其江, 龙根元, 等. 南海宣德海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质, 2017, 37(6): 140−148.
Li Liang, He Qijiang, Long Genyuan, et al. Sediment grain size distribution pattern and transportation trend in the Xuande water, South China Sea[J]. Marine Geology and Quaternary Geology, 2017, 37(6): 140−148.
|
[37] |
Wiedenmann J, D’Angelo C, Smith E G, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching[J]. Nature Climate Change, 2013, 3(2): 160−164. doi: 10.1038/nclimate1661
|
[38] |
Ning Zhiming, Fang Cao, Yu Kefu, et al. Influences of phosphorus concentration and porewater advection on phosphorus dynamics in carbonate sands around the Weizhou Island, northern South China Sea[J]. Marine Pollution Bulletin, 2020, 160: 111668. doi: 10.1016/j.marpolbul.2020.111668
|
[39] |
Den Haan J, Huisman J, Brocke H J, et al. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse[J]. Scientific Reports, 2016, 6: 28821. doi: 10.1038/srep28821
|
[40] |
Chen Xiaoyan, Yu Kefu, Huang Xueyong, et al. Atmospheric nitrogen deposition increases the possibility of macroalgal dominance on remote coral reefs[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(5): 1355−1369. doi: 10.1029/2019JG005074
|
[41] |
Ning Xiuren, Chai Fei, Xue Huijie, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10): C10005. doi: 10.1029/2004JC002365
|
[42] |
Furnas M, Mitchell A, Skuza M, et al. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon[J]. Marine Pollution Bulletin, 2005, 51(1/4): 253−265.
|