Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Zhang Huanwei,Ma Yi,Zhang Jingyu. Multi-dimensional analysis of atmospheric correction models on multi-spectral water depth inversion[J]. Haiyang Xuebao,2022, 44(7):145–160 doi: 10.12284/hyxb2022122
Citation: Zhang Huanwei,Ma Yi,Zhang Jingyu. Multi-dimensional analysis of atmospheric correction models on multi-spectral water depth inversion[J]. Haiyang Xuebao,2022, 44(7):145–160 doi: 10.12284/hyxb2022122

Multi-dimensional analysis of atmospheric correction models on multi-spectral water depth inversion

doi: 10.12284/hyxb2022122
  • Received Date: 2021-08-14
  • Rev Recd Date: 2022-01-13
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • Atmospheric correction (AC) is the basis and premise of quantitative remote sensing of water column. The effects of different AC models on water depth inversion from the four aspects of AC model, AC model parameters, water component differences, and water depth inversion band combination are discussed in this paper. The research uses 6S, FLAASH, ACOLITE and QUAC four AC models, select continental, marine and urban aerosol patterns, and the shallow waters around the northwest side of Oahu Island and Shemya Island are used as the study area of clean water, while the shallow waters around Liaodong Shoal and Penang Strait are used as the study area of turbid water. AC is performed based on Landsat-8 multispectral images, and eight wavebands are used for bathymetric remote sensing inversion. The results show that: (1) all the four AC models can weaken the atmospheric influence on the water signal to some extent; the correction results of different models are somewhat different depending on the parameter selection and the components of the water column. And the peak reflectance of the two types of water column occurs in the blue and green bands, respectively. (2) The 6S model is more robust, and the bathymetric inversion results of this model are less volatile than the rest of the models due to the changes in the components of the water column. The water depth inversion results of the two aerosol models of the FLAASH have more obvious differences in turbid water, and the difference of MRE in shallow water of Liaodong Shoal is 7.9%; the ACOLITE model is significantly influenced by the water column type and has superiority and stability for turbid water, and the MRE is 5.6% lower than that of FLAASH. (3) The accuracy of multi-band water depth inversion is generally better than that of single-band, but there is no significant correlation between the accuracy of inversion and however, there is no significant correlation between the inversion accuracy and the number of bands; the combination of bathymetric inversion bands has different sensitivity to different study areas, the inversion accuracy of the three-band model is better in clean water, and the inversion accuracy of the four-band model is optimal in turbid water, and the MRE is reduced by 5.6% compared with the three-band model.
  • loading
  • [1]
    王艳姣, 董文杰, 张培群, 等. 水深可见光遥感方法研究进展[J]. 海洋通报, 2007, 26(5): 92−101. doi: 10.3969/j.issn.1001-6392.2007.05.015

    Wang Yanjiao, Dong Wenjie, Zhang Peiqun, et al. Progress in water depth mapping from visible remote sensing data[J]. Marine Science Bulletin, 2007, 26(5): 92−101. doi: 10.3969/j.issn.1001-6392.2007.05.015
    [2]
    Renosh P R, Doxaran D, De Keukelaere L, et al. Evaluation of atmospheric correction algorithms for sentinel-2-MSI and sentinel-3-OLCI in highly turbid estuarine waters[J]. Remote Sensing, 2020, 12(8): 1285. doi: 10.3390/rs12081285
    [3]
    Gordon H R. Removal of atmospheric effects from satellite imagery of the oceans[J]. Applied Optics, 1978, 17(10): 1631−1636. doi: 10.1364/AO.17.001631
    [4]
    Gordon H R, Clark D K. Atmospheric effects in the remote sensing of phytoplankton pigments[J]. Boundary-Layer Meteorology, 1980, 18(3): 299−313. doi: 10.1007/BF00122026
    [5]
    Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897−912. doi: 10.1364/AO.39.000897
    [6]
    孔金玲, 杨晶, 孙晓明, 等. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130−137.

    Kong Jinling, Yang Jing, Sun Xiaoming, et al. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: a case study of Caofeidian offshore area[J]. Remote Sensing for Land & Resources, 2016, 28(3): 130−137.
    [7]
    郑伟, 曾志远. 遥感图像大气校正方法综述[J]. 遥感信息, 2004(4): 66−70. doi: 10.3969/j.issn.1000-3177.2004.04.019

    Zheng Wei, Zeng Zhiyuan. A review on methods of atmospheric correction for remote sensing images[J]. Remote Sensing Information, 2004(4): 66−70. doi: 10.3969/j.issn.1000-3177.2004.04.019
    [8]
    Wang Hanghang, Wang Jie, Cui Yuhuan, et al. Consistency of suspended particulate matter concentration in turbid water retrieved from sentinel-2 MSI and landsat-8 OLI sensors[J]. Sensors, 2021, 21(5): 1662. doi: 10.3390/s21051662
    [9]
    马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001

    Ma Yi, Zhang Jie, Zhang Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
    [10]
    Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978, 17(3): 379−383. doi: 10.1364/AO.17.000379
    [11]
    杨晓彤, 焦红波, 李艳雯, 等. 两种浅海水深快速反演方法对比研究[J]. 测绘科学, 2017, 42(11): 177−183.

    Yang Xiaotong, Jiao Hongbo, Li Yanwen, et al. Comparative research of two methods for fast waterdepthretrieval for shallow water[J]. Science of Surveying and Mapping, 2017, 42(11): 177−183.
    [12]
    张鹰, 张东, 王艳姣, 等. 含沙水体水深遥感方法的研究[J]. 海洋学报, 2008, 30(1): 51−58.

    Zhang Ying, Zhang Dong, Wang Yanjiao, et al. Study of remote sensing-based bathymetric method in sand-containing water bodies[J]. Haiyang Xuebao, 2008, 30(1): 51−58.
    [13]
    许海蓬, 张彦彦, 王磊, 等. 大气校正对水深遥感反演的影响分析[J]. 现代测绘, 2017, 40(3): 1−4, 9. doi: 10.3969/j.issn.1672-4097.2017.03.001

    Xu Haipeng, Zhang Yanyan, Wang Lei, et al. Influence analysis of atmospheric correction on bathymetry remote sensing inversion[J]. Modern Surveying and Mapping, 2017, 40(3): 1−4, 9. doi: 10.3969/j.issn.1672-4097.2017.03.001
    [14]
    张彦彦, 许海蓬, 吴涛, 等. 不同波段数目及组合对水深反演的影响[J]. 江苏海洋大学学报(自然科学版), 2020, 29(2): 45−49.

    Zhang Yanyan, Xu Haipeng, Wu Tao, et al. The influence of different band number and combination on bathymetric inversion[J]. Journal of Jiangsu Ocean University (Natural Sciences Edition), 2020, 29(2): 45−49.
    [15]
    Penny P, Kathryn S, Holly B. United States Coast Pilot[M]. United States: National Oceanic and Atmospheric Administration, 2014, 32: 385−386.
    [16]
    田震, 马毅, 张靖宇, 等. 基于Landsat-8遥感影像和LiDAR测深数据的水深主被动遥感反演研究[J]. 海洋技术学报, 2015, 34(2): 1−8.

    Tian Zhen, Ma Yi, Zhang Jingyu, et al. Study on the bathymetry inversion by active and passive remote sensing with Landsat-8 images and LIDAR data[J]. Journal of Ocean Technology, 2015, 34(2): 1−8.
    [17]
    金玉休, 曹志敏, 吴建政, 等. 辽东浅滩潮流运动特征与沉积物输运[J]. 海洋地质与第四纪地质, 2015, 35(6): 33−40.

    Jin Yuxiu, Cao Zhimin, Wu Jianzheng, et al. Tidal current movement and its bearing on sediment transportation on Liaodong shoal[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 33−40.
    [18]
    Vanhellemont Q, Ruddick K. Turbid wakes associated with offshore wind turbines observed with Landsat 8[J]. Remote Sensing of Environment, 2014, 145: 105−115. doi: 10.1016/j.rse.2014.01.009
    [19]
    Martins V S, Barbosa C C F, De Carvalho L A S, et al. Assessment of atmospheric correction methods for sentinel-2 MSI images applied to amazon floodplain lakes[J]. Remote Sensing, 2017, 9(4): 322. doi: 10.3390/rs9040322
    [20]
    Shen Junjie, Jiang Jie, Du Yixi, et al. Impact of aerosol type on atmospheric correction of case II waters[J]. IOP Conference Series: Earth and Environmental Science, 2019, 234(1): 012019.
    [21]
    Vermote E F, Tanre D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675−686. doi: 10.1109/36.581987
    [22]
    丁凡. 太湖OLI影像大气校正方法对比与适用性评价[D]. 西安: 西安科技大学, 2018.

    Ding Fan. Comparison and applicability assessment of atmospheric correction methods of OLI images in Taihu Lake[D]. Xi’an: Xi’an University of Science and Technology, 2018.
    [23]
    Cooley T, Anderson G P, Felde G W, et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation[C]//IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2002: 1414−1418.
    [24]
    Rothman L S, Rinsland C P, Goldman A, et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(5): 665−710. doi: 10.1016/S0022-4073(98)00078-8
    [25]
    Vanhellemont Q, Ruddick K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8[J]. Remote Sensing of Environment, 2015, 161: 89−106. doi: 10.1016/j.rse.2015.02.007
    [26]
    Dörnhöfer K, Göritz A, Gege P, et al. Water constituents and water depth retrieval from sentinel-2A-A first evaluation in an oligotrophic lake[J]. Remote Sensing, 2016, 8(11): 941. doi: 10.3390/rs8110941
    [27]
    Bernstein L S, Adler-Golden S M, Sundberg R L, et al. Validation of the Quick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery[C]//Proceedings of SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Orlando: SPIE, 2005: 668−678.
    [28]
    Lyzenga D R, Malinas N R, Tanis F J. Multispectral bathymetry using a simple physically based algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2251−2259. doi: 10.1109/TGRS.2006.872909
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(13)

    Article views (560) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return