Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Yuan Quan,Zhang Fanyi,Lei Ruibo, et al. Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea[J]. Haiyang Xuebao,2022, 44(11):31–41 doi: 10.12284/hyxb2022117
Citation: Yuan Quan,Zhang Fanyi,Lei Ruibo, et al. Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea[J]. Haiyang Xuebao,2022, 44(11):31–41 doi: 10.12284/hyxb2022117

Variations in winter sea ice extent and its responses to atmospheric forcing in the Bering Sea

doi: 10.12284/hyxb2022117
  • Received Date: 2022-01-27
  • Rev Recd Date: 2022-04-28
  • Available Online: 2022-06-23
  • Publish Date: 2022-11-03
  • The Bering Sea is one of the most obvious areas with reduced winter sea ice in Arctic region. The seasonal and long-term variations of sea ice in this region are closely related to the local climate, hydrological environment and ecosystem, as well as to Chinese weather and climate. In order to identify the long-term variation of winter sea ice in this region, the trend and spatial difference of sea ice extent in Bering Sea from 1960 to 2020 were analyzed by using the sliding t-test and linear regression analysis method based on Hadley Center data, and the effects of atmospheric forcing, such as general circulation, on sea ice change were analyzed. The results showed that the winter sea ice extent of the Bering Sea decreased significantly from 1960 to 2020, and there were significant abrupt changes in the 1970s and around 2000. During these processes, the Aleutian low pressure center and low pressure were strengthened, the core position shifted to the west of Bering Sea and the corresponding wind field distribution changes. Such process has a nearly 20-year cycle of oscillation. At the same time, the phase change of the Pacific Decadal Oscillation can regulate the meridional wind by changing the sea level pressure, and alter the thermal advection into the Bering Sea, thus affecting the winter sea ice extent. Therefore, winter sea ice in the Bering Sea is mainly controlled both by the Aleutian low pressure system and the North Pacific decadal oscillation, as well as the gerneral climate warming.
  • loading
  • [1]
    Overland J E, Stabeno P J. Is the climate of the Bering Sea warming and affecting the ecosystem?[J]. EOS, Transactions American Geophysical Union, 2004, 85(33): 309−312.
    [2]
    Zhang Jinlun, Woodgate R, Moritz R. Sea ice response to atmospheric and oceanic forcing in the Bering Sea[J]. Journal of Physical Oceanography, 2010, 40(8): 1729−1747. doi: 10.1175/2010JPO4323.1
    [3]
    Stabeno P J, Hunt G L. Overview of the inner front and Southeast Bering Sea carrying capacity programs[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(26): 6157−6168. doi: 10.1016/S0967-0645(02)00339-9
    [4]
    Stabeno P J, Bond N A, Salo S A. On the recent warming of the southeastern Bering Sea Shelf[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(23/26): 2599−2618.
    [5]
    Bliss A C, Steele M, Peng Ge, et al. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record[J]. Environmental Research Letters, 2019, 14(4): 045003. doi: 10.1088/1748-9326/aafb84
    [6]
    Wang Jia, Hu Haoguo, Mizobata K, et al. Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model-data fusion study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C2): C02011.
    [7]
    Stabeno P J, Bond N A, Kachel N B, et al. On the temporal variability of the physical environment over the south-eastern Bering Sea[J]. Fisheries Oceanography, 2001, 10(1): 81−98. doi: 10.1046/j.1365-2419.2001.00157.x
    [8]
    Bluhm B A, Gradinger R. Regional variability in food availability for Arctic marine mammals[J]. Ecological Applications, 2008, 18(sp2): S77−S96. doi: 10.1890/06-0562.1
    [9]
    Ding Yihui, Krishnamurti T N. Heat budget of the Siberian high and the winter monsoon[J]. Monthly Weather Review, 1987, 115(10): 2428−2449. doi: 10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2
    [10]
    Ding Yihui. Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia[J]. Meteorology and Atmospheric Physics, 1990, 44(1): 281−292.
    [11]
    Zhang Yi, Sperber K R, Boyle J S. Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis[J]. Monthly Weather Review, 1997, 125(10): 2605−2619. doi: 10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2
    [12]
    Compo G P, Kiladis G N, Webster P J. The horizontal and vertical structure of East Asian winter monsoon pressure surges[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(553): 29−54. doi: 10.1002/qj.49712555304
    [13]
    孙建奇, 王会军, 袁薇. 2007年3月中国东部北方地区一次强灾害性暴风雪事件的成因初探[J]. 气象学报, 2009, 67(3): 469−477. doi: 10.11676/qxxb2009.047

    Sun Jianqi, Wang Huijun, Yuan Wei. A preliminary investigation on causes of the catastrophic snowstorm in March 2007 in the northeastern parts of China[J]. Acta Meteorologica Sinica, 2009, 67(3): 469−477. doi: 10.11676/qxxb2009.047
    [14]
    Wang Huijun, Yu Entao, Yang Song. An exceptionally heavy snowfall in Northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model[J]. Meteorology and Atmospheric Physics, 2011, 113(1): 11−25.
    [15]
    Li Fei, Wang Huijun. Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations[J]. Advances in Atmospheric Sciences, 2013, 30(1): 48−56. doi: 10.1007/s00376-012-2071-2
    [16]
    Mantua N J, Hare S R, Zhang Yuan, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [17]
    Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 1994, 9(6): 303−319. doi: 10.1007/BF00204745
    [18]
    Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950
    [19]
    Overland J E, Adams J M, Bond N A. Decadal variability of the Aleutian low and its relation to high-latitude circulation[J]. Journal of Climate, 1999, 12(5): 1542−1548. doi: 10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
    [20]
    Stabeno P J, Overland J E. Bering Sea shifts toward an earlier spring transition[J]. EOS, Transactions American Geophysical Union, 2001, 82(29): 317−321.
    [21]
    Niebauer H J, Day R H. Causes of interannual variability in the sea ice cover of the eastern Bering Sea[J]. GeoJournal, 1989, 18(1): 45−59. doi: 10.1007/BF00722385
    [22]
    Overland J E, Bond N A, Adams J M. North Pacific atmospheric and SST anomalies in 1997: links to ENSO?[J]. Fisheries Oceanography, 2001, 10(1): 69−80. doi: 10.1046/j.1365-2419.2001.00154.x
    [23]
    Niebauer H J. Sea ice and temperature variability in the eastern Bering Sea and the relation to atmospheric fluctuations[J]. Journal of Geophysical Research: Oceans, 1980, 85(C12): 7507−7515. doi: 10.1029/JC085iC12p07507
    [24]
    Overland J E, Pease C H. Cyclone climatology of the Bering Sea and its relation to sea ice extent[J]. Monthly Weather Review, 1982, 110(1): 5−13. doi: 10.1175/1520-0493(1982)110<0005:CCOTBS>2.0.CO;2
    [25]
    Sasaki Y N, Minobe S. Seasonally dependent interannual variability of sea ice in the Bering Sea and its relation to atmospheric fluctuations[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05011.
    [26]
    Niebauer H J. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947–1996[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27717−27737. doi: 10.1029/98JC02499
    [27]
    Rodionov S N, Overland J E, Bond N A. The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification[J]. Journal of Climate, 2005, 18(1): 160−177. doi: 10.1175/JCLI3253.1
    [28]
    胡宪敏, 苏洁, 赵进平, 等. 白令海楚科奇海的海冰范围变化特征[J]. 冰川冻土, 2007, 29(1): 53−60.

    Hu Xianmin, Su Jie, Zhao Jinping, et al. Variation Characteristics of the Sea Ice Extent in Bering-Chukchi Seas[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 53−60.
    [29]
    Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 32−49. doi: 10.1016/j.pocean.2015.05.009
    [30]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 108(D14): 4407.
    [31]
    Cai Qiongqiong, Beletsky D, Wang Jia, et al. Interannual and decadal variability of arctic summer sea ice associated with atmospheric teleconnection patterns during 1850–2017[J]. Journal of Climate, 2021, 34(24): 9931−9955.
    [32]
    Meier W N, Fetterer F, Windnagel A K, et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 4[EB/OL]. (2021–05–31) [2022–01–26]. https://nsidc.org/data/G02202/versions/4.
    [33]
    Cavalieri D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355−5369. doi: 10.1029/JD089iD04p05355
    [34]
    Comiso J C. Characteristics of arctic winter sea ice from satellite multispectral microwave observations[J]. Journal of Geophysical Research: Atmospheres, 1986, 91(C1): 975−994. doi: 10.1029/JC091iC01p00975
    [35]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [36]
    Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978–1996[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20837−20856. doi: 10.1029/1999JC900082
    [37]
    Papineau J M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO[J]. International Journal of Climatology, 2001, 21(13): 1577−1592. doi: 10.1002/joc.686
    [38]
    Hartmann B, Wendler G. The significance of the 1976 Pacific climate shift in the climatology of Alaska[J]. Journal of Climate, 2005, 18(22): 4824−4839. doi: 10.1175/JCLI3532.1
    [39]
    Wendler G, Shulski M. A century of climate change for Fairbanks, Alaska[J]. Arctic, 2009, 62(3): 295−300.
    [40]
    Rodionov S N, Bond N A, Overland J E. The Aleutian low, storm tracks, and winter climate variability in the Bering Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(23/26): 2560−2577.
    [41]
    Wendler G, Chen L, Moore B. Recent sea ice increase and temperature decrease in the Bering Sea area, Alaska[J]. Theoretical and Applied Climatology, 2014, 117(3): 393−398.
    [42]
    Wendler G, Chen L, Moore B. The first decade of the new century: a cooling trend for most of Alaska[J]. The Open Atmospheric Science Journal, 2012, 6(1): 111−116. doi: 10.2174/1874282301206010111
    [43]
    Stabeno P J, Bell S W. Extreme conditions in the Bering Sea (2017–2018): record-breaking low sea-ice extent[J]. Geophysical Research Letters, 2019, 46(15): 8952−8959. doi: 10.1029/2019GL083816
    [44]
    Lindsay R W, Zhang J. The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point?[J]. Journal of Climate, 2005, 18(22): 4879−4894. doi: 10.1175/JCLI3587.1
    [45]
    Kikuchi G, Abe H, Hirawake T, et al. Distinctive spring phytoplankton bloom in the Bering Strait in 2018: A year of historically minimum sea ice extent[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181–182: 104905. doi: 10.1016/j.dsr2.2020.104905
    [46]
    IARC. In the coastal communities near the Bering Strait, a winter unlike the rest[EB/OL]. (2018–04–16) [2022–01–26]. https://www.climate.gov/news-features/features/coastal-communities-near-bering-strait-winter-unlike-rest.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (603) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return