Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Zhang Huimin,Jin Meibing,Qi Di. Sensitivity study of constant and variable snow density schemes in diagnosing and calculating snow depth[J]. Haiyang Xuebao,2022, 44(7):47–57 doi: 10.12284/hyxb2022110
Citation: Zhang Huimin,Jin Meibing,Qi Di. Sensitivity study of constant and variable snow density schemes in diagnosing and calculating snow depth[J]. Haiyang Xuebao,2022, 44(7):47–57 doi: 10.12284/hyxb2022110

Sensitivity study of constant and variable snow density schemes in diagnosing and calculating snow depth

doi: 10.12284/hyxb2022110
  • Received Date: 2021-07-29
  • Rev Recd Date: 2022-01-06
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • Current CMIP6 climate models (such as CESM2 and NESM3) use constant snow density, while those models that focus on snow depth and density changes (such as SnowModel-LG) use empirical snow density formulas. Comparing the modeled snow depth with those observed by the CryoSat-2 satellite, it is found that from the perspective of the spatial distribution and average value of the snow depth, it is difficult to detect the effects of varying snow density on the simulation of snow depth in the Arctic Ocean. The model improvement and its mechanism from varying snow depth is still to be further studied. Here an empirical snow density model considering meteorological factors such as air temperature, wind etc., is applied to the SNOTEL observational site to carry out the following sensitivity experiments for different factors: A. snow density model considering all meteorological factors; B. constant snow density model; C. same as A but the influence of wind on the densification is not considered and D. same as A but the influence of temperature on the densification is not considered. The root mean square error of snow depth simulated by experiments A, B, C and D from November 1, 2018 to May 10, 2019 are 4.2 cm, 4.8 cm, 25.9 cm, and 4.2 cm, respectively. The results show that the mean snow density and depth simulated by the varying snow density model are close to the results using constant snow density, but the root mean square error of the simulated snow depth from Case A is the smallest, and the Case A simulation can reproduce the high frequency variations of snow depth on the time scale of several days to ten days. In the meantime, the relative errors in the period with high-frequency snow depth variations are also reduced as they are found to be related. In addition, it is also found that the influence of temperature on snow densification is much smaller than that of wind.
  • loading
  • [1]
    李淑江, 赵进平, 李翔, 等. 北极冰上积雪的光学衰减性质[J]. 中国海洋大学学报(自然科学版), 2010, 40(7): 9−14.

    Li Shujiang, Zhao Jinping, Li Xiang, et al. The optical properties of snow on the ice in the north polar region[J]. Periodical of Ocean University of China, 2010, 40(7): 9−14.
    [2]
    Wu X, Budd W F, Lytle V I, et al. The effect of snow on Antarctic sea ice simulations in a coupled atmosphere-sea ice model[J]. Climate Dynamics, 1999, 15(2): 127−143. doi: 10.1007/s003820050272
    [3]
    Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 8851.
    [4]
    Meløysund V, Leira B, Høiseth K V, et al. Predicting snow density using meteorological data[J]. Meteorological Applications, 2007, 14(4): 413−423. doi: 10.1002/met.40
    [5]
    Black R F. Precipitation at Barrow, Alaska, greater than recorded[J]. Eos, Transactions American Geophysical Union, 1954, 35(2): 203−207. doi: 10.1029/TR035i002p00203
    [6]
    Gottlieb L. Development and applications of a runoff model for snowcovered and glacierized basins[J]. Hydrology Research, 1980, 11(5): 255−272. doi: 10.2166/nh.1980.0013
    [7]
    Verseghy D L. Class-A Canadian land surface scheme for GCMS. I. soil model[J]. International Journal of Climatology, 1991, 11(2): 111−133.
    [8]
    Radionov V F, Bryazgin N N, Alexandrov E I. The snow cover of the Arctic Basin[R]. Washington: Applied Physics Laboratory, University of Washington, 1997.
    [9]
    Warren S G, Rigor I G, Untersteiner N, et al. Snow depth on Arctic sea ice[J]. Journal of Climate, 1999, 12(6): 1814−1829. doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
    [10]
    Liston G E, Itkin P, Stroeve J, et al. A lagrangian snow-evolution system for sea-ice applications (SnowModel-LG): part I-model description[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2019JC015913.
    [11]
    Hedstrom N R, Pomeroy J W. Measurements and modelling of snow interception in the boreal forest[J]. Hydrological Processes, 1998, 12(10/11): 1611−1625.
    [12]
    Pomeroy J W, Gray D M, Shook K R, et al. An evaluation of snow accumulation and ablation processes for land surface modelling[J]. Hydrological Processes, 1998, 12(15): 2339−2367. doi: 10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L
    [13]
    Hellstrom R Å. Forest cover algorithms for estimating meteorological forcing in a numerical snow model[J]. Hydrological Processes, 2000, 14(18): 3239−3256. doi: 10.1002/1099-1085(20001230)14:18<3239::AID-HYP201>3.0.CO;2-O
    [14]
    Bartlett P A, MacKay M D, Verseghy D L. Modified snow algorithms in the Canadian land surface scheme: model runs and sensitivity analysis at three boreal forest stands[J]. Atmosphere-Ocean, 2006, 44(3): 207−222. doi: 10.3137/ao.440301
    [15]
    Anderson E A. A point energy and mass balance model of a snow cover[R]. Washington: United States, National Weather Service, 1976.
    [16]
    陆恒, 魏文寿, 刘明哲, 等. 天山季节性积雪稳定期雪密度与积累速率的观测分析[J]. 冰川冻土, 2011, 33(2): 374−380.

    Lu Heng, Wei Wenshou, Liu Mingzhe, et al. Densification and accumulation rate of snow in the stable snow cover period in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 374−380.
    [17]
    Lundberg A, Feiccabrino J. Sea ice growth: modeling of precipitation phase[C]//Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea: Port and Ocean Engineering under Arctic Conditions, 2009.
    [18]
    Avanzi F, Michele C D, Ghezzi A. On the performances of empirical regressions for the estimation of bulk snow density[J]. Geografia Fisica e Dinamica Quaternaria, 2015, 38: 105−112.
    [19]
    Diamond M, Lowry W P. Correlation of density of new snow with 700-millibar temperature[J]. Journal of Meteorology, 1954, 11(6): 512−513. doi: 10.1175/1520-0469(1954)011<0512:codons>2.0.co;2
    [20]
    Webster M A, Parker C, Boisvert L, et al. The role of cyclone activity in snow accumulation on Arctic sea ice[J]. Nature Communications, 2019, 10(1): 5285. doi: 10.1038/s41467-019-13299-8
    [21]
    Eicken H, Fischer H, Lemke P. Effects of the snow cover on Antarctic sea ice and potential modulation of its response to climate change[J]. Annals of Glaciology, 1995, 21: 369−376. doi: 10.1017/S0260305500016086
    [22]
    Schramm J L, Holland M M, Curry J A. The effects of snowfall on a snow-ice-thickness distribution[J]. Annals of Glaciology, 1997, 25: 287−291. doi: 10.3189/S0260305500014178
    [23]
    李志军, 张占海. 中国2003年北极海冰调查及未来北极海冰研究战略[J]. 极地研究, 2004, 16(3): 202−210.

    Li Zhijun, Zhang Zhanhai. Sea ice investigation in chiare-2003 and future Arctic ice research tactic[J]. Chinese Journal of Polar Research, 2004, 16(3): 202−210.
    [24]
    王学忠, 孙照渤, 胡邦辉. 近年来国外海冰模式发展的回顾[J]. 南京气象学院学报, 2003, 26(3): 424−432.

    Wang Xuezhong, Sun Zhaobo, Hu Banghui. A review on development of sea ice model in foreign countries during recent years[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(3): 424−432.
    [25]
    Langehaug H R, Geyer F, Smedsrud L H, et al. Arctic sea ice decline and ice export in the CMIP5 historical simulations[J]. Ocean Modelling, 2013, 71: 114−126. doi: 10.1016/j.ocemod.2012.12.006
    [26]
    Notz D, SIMIP Community. Arctic sea ice in CMIP6[J]. Geophysical Research Letters, 2020, 47(10): e2019GL086749.
    [27]
    De Michele C, Avanzi F, Ghezzi A, et al. Investigating the dynamics of bulk snow density in dry and wet conditions using a one-dimensional model[J]. The Cryosphere, 2013, 7(2): 433−444. doi: 10.5194/tc-7-433-2013
    [28]
    Blanchard-Wrigglesworth E, Webster M A, Farrell S L, et al. Reconstruction of snow on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3588−3602. doi: 10.1002/2017JC013364
    [29]
    Petty A A, Webster M, Boisvert L, et al. The NASA Eulerian Snow on sea ice model (NESOSIM) v1.0: initial model development and analysis[J]. Geoscientific Model Development, 2018, 11(11): 4577−4602. doi: 10.5194/gmd-11-4577-2018
    [30]
    Stroeve J, Liston G E, Buzzard S, et al. A lagrangian snow evolution system for sea ice applications (SnowModel-LG): part II—analyses[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2019JC015900.
    [31]
    Bromwich D H. Snowfall in high southern latitudes[J]. Reviews of Geophysics, 1988, 26(1): 149−168. doi: 10.1029/RG026i001p00149
    [32]
    Bromwich D H, Robasky F M, Cullather R I, et al. The atmospheric hydrologic cycle over the southern ocean and Antarctica from operational numerical analyses[J]. Monthly Weather Review, 1995, 123(12): 3518−3538. doi: 10.1175/1520-0493(1995)123<3518:TAHCOT>2.0.CO;2
    [33]
    Huwald H, Tremblay L B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05009.
    [34]
    尹豪, 苏洁, Cheng Bin. 积雪密度演变对北极积雪深度模拟的影响[J]. 海洋学报, 2021, 43(7): 75−89.

    Yin Hao, Su Jie, Cheng Bin. The effect of snow density evolution on modelled snow depth in the Arctic[J]. Haiyang Xuebao, 2021, 43(7): 75−89.
    [35]
    曹剑, 马利斌, 李娟, 等. NUIST-ESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 566−570.

    Cao Jian, Ma Libin, Li Juan, et al. Introduction of NUIST-ESM model and its CMIP6 activities[J]. Climate Change Research, 2019, 15(5): 566−570.
    [36]
    Wang Huazhao, Zhang Lujun, Chu Min, et al. Advantages of the latest Los Alamos Sea-Ice Model (CICE): evaluation of the simulated spatiotemporal variation of Arctic sea ice[J]. Atmospheric and Oceanic Science Letters, 2020, 13(2): 113−120. doi: 10.1080/16742834.2020.1712186
    [37]
    Hunke E C, Lipscomb W H. CICE: the Los Alamos Sea Ice Model, documentation and software user’s manual, version 4.1 LA-CC-06-012[R]. Los Alamos, New Mexico: Los Alamos National Laboratory, 2010.
    [38]
    Liston G E, Haehnel R B, Sturm M, et al. Simulating complex snow distributions in windy environments using SnowTran-3D[J]. Journal of Glaciology, 2007, 53(181): 241−256. doi: 10.3189/172756507782202865
    [39]
    Bormann K J, Westra S, Evans J P, et al. Spatial and temporal variability in seasonal snow density[J]. Journal of Hydrology, 2013, 484: 63−73. doi: 10.1016/j.jhydrol.2013.01.032
    [40]
    Powell D C, Markus T, Stössel A. Effects of snow depth forcing on Southern Ocean sea ice simulations[J]. Journal of Geophysical Research: Oceans, 2005, 110(C6): C06001.
    [41]
    Longley R W. Snow depth and snow density at Resolute, Northwest Territories[J]. Journal of Glaciology, 1960, 3(28): 733−738. doi: 10.1017/S0022143000018037
    [42]
    Sturm M, Holmgren J, Perovich D K. Spatial variations in the winter heat flux at SHEBA: estimates from snow-ice interface temperatures[J]. Annals of Glaciology, 2001, 33: 213−220. doi: 10.3189/172756401781818437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (494) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return