Citation: | Yang Jiangjie,Dai Zhijun,Mei Xuefei, et al. Variations of suspended sediment concentration of the Mississippi River delivered from land into sea[J]. Haiyang Xuebao,2022, 44(7):71–81 doi: 10.12284/hyxb2022098 |
[1] |
Walling D E. Human impact on land-ocean sediment transfer by the world’s rivers[J]. Geomorphology, 2006, 79(3/4): 192−216.
|
[2] |
Dai Zhijun, Liu J T, Wei Wen, et al. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta[J]. Scientific Reports, 2014, 4: 6600.
|
[3] |
Dai Zhijun, Fagherazzi S, Mei Xuefei, et al. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013[J]. Geomorphology, 2016, 268: 123−132. doi: 10.1016/j.geomorph.2016.06.009
|
[4] |
Syvitski J P M, Peckham S D, Hilberman R, et al. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective[J]. Sedimentary Geology, 2003, 162: 5−24. doi: 10.1073/pnas.0812878106
|
[5] |
程天文, 赵楚年. 我国主要河流入海径流量、输沙量及对沿岸的影响[J]. 海洋学报, 1985, 7(4): 460−471.
Cheng Tianwen, Zhao Chunian. Runoff, sediment transport and coastal impact of major rivers in China[J]. Haiyang Xuebao, 1985, 7(4): 460−471.
|
[6] |
Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2013: 392.
|
[7] |
Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5720): 376−380. doi: 10.1126/science.1109454
|
[8] |
李彩虹, 于泉洲, 宫雪, 等. 1980年代以来黄河下游含沙量变化的遥感研究[J]. 环境科学与管理, 2020, 45(2): 165−170. doi: 10.3969/j.issn.1673-1212.2020.02.033
Li Caihong, Yu Quanzhou, Gong Xue, et al. Remote sensing monitoring of sediment content variation in lower reach of Yellow River since 1980s[J]. Environmental Science and Management, 2020, 45(2): 165−170. doi: 10.3969/j.issn.1673-1212.2020.02.033
|
[9] |
陆永军, 季荣耀, 王志力, 等. 珠江三角洲网河区低水位时空变化规律[J]. 水科学进展, 2019, 30(6): 800−809.
Lu Yongjun, Ji Rongyao, Wang Zhili, et al. Spatial-temporal variation of low water level in the channel network system of the Pearl River Delta[J]. Advances in Water Science, 2019, 30(6): 800−809.
|
[10] |
Zhan Weikang, Wu Jie, Wei Xing, et al. Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015[J]. Continental Shelf Research, 2019, 172: 22−32. doi: 10.1016/j.csr.2018.11.007
|
[11] |
Fu K D, He D M, Lu X X. Sedimentation in the Manwan reservoir in the upper Mekong and its downstream impacts[J]. Quaternary International, 2008, 186(1): 91−99. doi: 10.1016/j.quaint.2007.09.041
|
[12] |
Kummu M, Vans O. Sediment-related impacts due to upstream reservoir trapping, the lower Mekong River[J]. Geomorphology, 2007, 85(3/4): 275−293.
|
[13] |
Arisanty D, Saputra A N. Remote sensing studies of suspended sediment concentration variation in barito delta[J]. IOP Conference Series: Earth and Environmental Science, 2017, 98: 012058. doi: 10.1088/1755-1315/98/1/012058
|
[14] |
周金城, 胡辉敏, 黎振强. 密西西比河流域水质协同治理及对长江流域治理的启示[J]. 武陵学刊, 2021, 46(1): 52−58.
Zhou Jincheng, Hu Huimin, Li Zhenqiang. Water quality cooperative management in Mississippi River basin and its enlightenment to the Yangtze River basin[J]. Journal of Wuling, 2021, 46(1): 52−58.
|
[15] |
Han Guoqi, Ma Zhimin, Chen Nan, et al. Coastal sea level projections with improved accounting for vertical land motion[J]. Scientific Reports, 2015, 5: 16085. doi: 10.1038/srep16085
|
[16] |
任美锷. 人类活动对密西西比河三角洲最近演变的影响[J]. 地理学报, 1989, 44(2): 221−229. doi: 10.3321/j.issn:0375-5444.1989.02.011
Ren Meie. Man’s impact on the coastal zone of the Mississippi River Delta[J]. Acta Geographica Sinica, 1989, 44(2): 221−229. doi: 10.3321/j.issn:0375-5444.1989.02.011
|
[17] |
Meade R H, Moody J A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007[J]. Hydrological Processes, 2010, 24(1): 35−49.
|
[18] |
Joshi S, Xu Y J. Assessment of suspended sand availability under different flow conditions of the lowermost Mississippi River at tarbert landing during 1973–2013[J]. Water, 2015, 7(12): 7022−7044. doi: 10.3390/w7126672
|
[19] |
丁喜桂, Mendelssohn I A, 王吉松. 美国密西西比河三角洲湿地流失的原因及修复措施[J]. 海洋地质前沿, 2011, 27(2): 61−65.
Ding Xigui, Mendelssohn I A, Wang Jisong. Wetland loss in Mississippi River Delta complex: causes and remediation[J]. Marine Geology Frontiers, 2011, 27(2): 61−65.
|
[20] |
Wass P D, Leeks G J L. Suspended sediment fluxes in the Humber catchment, UK[J]. Hydrological Processes, 1999, 13(7): 935−953. doi: 10.1002/(SICI)1099-1085(199905)13:7<935::AID-HYP783>3.0.CO;2-L
|
[21] |
Horowitz A J, Elrick K A, Smith J J. Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the NASQAN programme[J]. Hydrological Processes, 2001, 15(7): 1107−1132. doi: 10.1002/hyp.206
|
[22] |
Siakeu J, Oguchi T, Aoki T, et al. Change in riverine suspended sediment concentration in central Japan in response to late 20th century human activities[J]. CATENA, 2004, 55(2): 231−254. doi: 10.1016/S0341-8162(03)00120-6
|
[23] |
Rovira A, Batalla R J. Temporal distribution of suspended sediment transport in a Mediterranean basin: the Lower Tordera (NE SPAIN)[J]. Geomorphology, 2006, 79(1/2): 58−71.
|
[24] |
夏骥, 肖永芹. 密西西比河开发经验及对长江流域发展的启示[J]. 重庆社会科学, 2006(5): 22−26.
Xia Ji, Xiao Yongqin. Exploitation experiences of Mississippi River & the revelation for the development of Yangtze basin[J]. Chongqing Social Sciences, 2006(5): 22−26.
|
[25] |
Xu Y J. Long-term sediment transport and delivery of the largest distributary of the Mississippi River, the Atchafalaya, USA[M]//Banasik K, Horowitz A, Owens P N, et al. Sediment Dynamics for a Changing Future. Wallingford: IAHS Press, 2010.
|
[26] |
Copeland R R, Thomas W A. Lower Mississippi River tarbert landing to east jetty sedimentation study: numerical model investigation[R]. New Orleans, Louisiana: US Army Engineer District, 1992.
|
[27] |
Rosen T, Xu Y J. Recent decadal growth of the Atchafalaya River Delta complex: effects of variable riverine sediment input and vegetation succession[J]. Geomorphology, 2013, 194: 108−120. doi: 10.1016/j.geomorph.2013.04.020
|
[28] |
Hulme M. Intergovernmental panel on climate change (IPCC)[C]//International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Ltd., 2016.
|
[29] |
Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperatures over Canada[J]. Journal of Climate, 2001, 14(9): 1959−1976. doi: 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
|
[30] |
魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999.
Wei Fengying. Modern Climate Statistical Diagnosis and Prediction Technology[M]. Beijing: China Meteorological Press, 1999.
|
[31] |
Gao Jinjuan, Dai Zhijun, Mei Xuefei, et al. Interference of natural and anthropogenic forcings on variations in continental freshwater discharge from the Red River (Vietnam) to sea[J]. Quaternary International, 2015, 380−381: 133−142. doi: 10.1016/j.quaint.2015.01.007
|
[32] |
Greenwood J A, Landwehr J M, Matalas N C, et al. Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[J]. Water Resources Research, 1979, 15(5): 1049−1054. doi: 10.1029/WR015i005p01049
|
[33] |
Mouri G, Ros F C, Chalov S. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments[J]. Geomorphology, 2014, 213: 266−276. doi: 10.1016/j.geomorph.2014.02.001
|
[34] |
White M J, Santhi C, Kannan N, et al. Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation[J]. Journal of Soil and Water Conservation, 2014, 69(1): 26−40. doi: 10.2489/jswc.69.1.26
|
[35] |
Mize S V, Murphy J C, Diehl T H, et al. Suspended-sediment concentrations and loads in the lower Mississippi and Atchafalaya rivers decreased by half between 1980 and 2015[J]. Journal of Hydrology, 2018, 564: 1−11. doi: 10.1016/j.jhydrol.2018.05.068
|
[36] |
Knox J C. Historical valley floor sedimentation in the upper Mississippi valley[J]. Annals of the Association of American Geographers, 1987, 77(2): 224−244. doi: 10.1111/j.1467-8306.1987.tb00155.x
|
[37] |
Alexander J S, Wilson R C, Green W R. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta[R]. Reston, Virginia: U. S. Geological Survey, 2012.
|
[38] |
Tweel A W, Turner R E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta[J]. Limnology and Oceanography, 2012, 57(1): 18−28. doi: 10.4319/lo.2012.57.1.0018
|
[39] |
Mossa J. Discharge-sediment dynamics of the lower Mississippi River[J]. Gulf Coast Association of Geological Societies Transactions, 1988, 38: 303−314.
|
[40] |
Mossa J. Sediment dynamics in the lowermost Mississippi River[J]. Engineering Geology, 1996, 45(1/4): 457−479.
|
[41] |
谢云, 赵莹, 张玉平, 等. 美国土壤侵蚀调查的历史与现状[J]. 中国水土保持, 2013(10): 53−60. doi: 10.3969/j.issn.1000-0941.2013.10.015
Xie Yun, Zhao Ying, Zhang Yuping, et al. History and current situation of soil erosion survey in the United States[J]. Soil and Water Conservation in China, 2013(10): 53−60. doi: 10.3969/j.issn.1000-0941.2013.10.015
|
[42] |
Morang A, Rosati J D, King D B. Regional sediment processes, sediment supply, and their impact on the Louisiana coast[J]. Journal of Coastal Research, 2013, 63(S1): 141−165.
|
[43] |
Misir V, Arya D S, Murumkar A R. Impact of ENSO on river flows in Guyana[J]. Water Resources Management, 2013, 27(13): 4611−4621. doi: 10.1007/s11269-013-0430-0
|
[44] |
Wood P A. Controls of variation in suspended sediment concentration in the River Rother, West Sussex, England[J]. Sedimentology, 1977, 24(3): 437−445. doi: 10.1111/j.1365-3091.1977.tb00131.x
|