Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Jinchao,Liu Jianqiang,Ding Jing, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao,2022, 44(5):1–11 doi: 10.12284/hyxb2022097
Citation: Liu Jinchao,Liu Jianqiang,Ding Jing, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao,2022, 44(5):1–11 doi: 10.12284/hyxb2022097

A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements

doi: 10.12284/hyxb2022097
  • Received Date: 2021-07-13
  • Rev Recd Date: 2021-08-30
  • Available Online: 2022-06-15
  • Publish Date: 2022-06-15
  • As China’s first operational ocean color sensor, the coastal zone imager (CZI) carried by Haiyang-1C (HY-1C) satellite is playing an increasingly significant role in offshore ocean environmental monitoring. After the launch of HY-1D satellite, the combination of CZI sensors can provide two observations in three days for coastal zone through dual-satellite system. CZI sensors have demonstrated prominent application advantages for monitoring marine floating algae, oil spill and so on. Since the high spatial resolution optical data contains abundant information about the marine environment, it also brings some distraction to the identification and extraction of specific ocean targets. In this work, a novel CZI algorithm was developed based on cooperation of scaled algae index (SAI) and virtual baseline floating macroalgae height (VB-FAH) to extract floating green tide information in the Yellow Sea from HY-1C satellite CZI measurements. VB-FAH method can be used to enhance the difference between floating algae and sea water, especially for satellite’s sensors with no short-wave infrared bands. After that, the algorithm efficiently rejects the complex interference information in the ocean high spatial resolution optical data by SAI sliding window. The algorithm has high accuracy and time efficiency in the extraction of floating green tide from CZI measurements. Moreover, the study carried out an uncertainty analysis for the area of algae-containing pixels between HY-1C satellite CZI data with 50 m spatial resolution and GF-1 satellite WFV1 data with 16 m spatial resolution. The result indicates that the uncertainty in the inversion results of CZI data mainly comes from the over estimation of small patches of floating algae. The study also pointed out that the uncertainty of optical data for floating algae monitoring is not only from the difference of spatial resolution between two sensors, but also related to the spatial variability of the morphological size of floating algae. Exploring the morphological spatial variability of floating algae will help improve the accuracy of optical data inversion results and clarify the uncertainty.
  • [1]
    Nelson T A, Haberlin K, Nelson A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms[J]. Ecology, 2008, 89(5): 1287−1298. doi: 10.1890/07-0494.1
    [2]
    Ye Naihao, Zhang Xiaowen, Mao Yuze, et al. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example[J]. Ecological Research, 2011, 26(3): 477−485. doi: 10.1007/s11284-011-0821-8
    [3]
    Wang X H, Li L, Bao X, et al. Economic cost of an algae bloom cleanup in China’s 2008 Olympic sailing venue[J]. Eos, Transactions American Geophysical Union, 2009, 90(28): 238−239. doi: 10.1029/2009EO280002
    [4]
    Li Hongmei, Zhang Yongyu, Tang Hongjie, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea[J]. Harmful Algae, 2017, 63: 164−172. doi: 10.1016/j.hal.2017.02.006
    [5]
    Liu Dongyan, Keesing J K, Dong Zhijun, et al. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms[J]. Marine Pollution Bulletin, 2010, 60(9): 1423−1432. doi: 10.1016/j.marpolbul.2010.05.015
    [6]
    Liu Dongyan, Keesing J K, Xing Qianguo, et al. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China[J]. Marine Pollution Bulletin, 2009, 58(6): 888−895. doi: 10.1016/j.marpolbul.2009.01.013
    [7]
    Liu Dongyan, Keesing J K, He Peimin, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2−10. doi: 10.1016/j.ecss.2013.05.021
    [8]
    Zhang Xiaowen, Mao Yuze, Zhuang Zhimeng, et al. Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea[J]. Journal of Fishery Sciences of China, 2008, 15(5): 822−829.
    [9]
    Liang Zongying, Lin Xiangzhi, Ma Mu, et al. A preliminary study of the Enteromorpha prolifera drift gathering causing the green tide phenomenon[J]. Periodical of Ocean University of China, 2008, 38(4): 601−604.
    [10]
    Gower J, Hu Chuanmin, Borstad G, et al. Ocean color satellites show extensive lines of floating Sargassum in the gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3619−3625. doi: 10.1109/TGRS.2006.882258
    [11]
    Hu Chuanmin, Li Daqiu, Chen Changsheng, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2010, 115(C5): C05017.
    [12]
    Hu Chuanmin, He Mingxia. Origin and offshore extent of floating algae in Olympic sailing area[J]. Eos, Transactions American Geophysical Union, 2008, 89(33): 302−303. doi: 10.1029/2008EO330002
    [13]
    Hu Lianbo, Zeng Kan, Hu Chuanmin, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223: 194−207. doi: 10.1016/j.rse.2019.01.014
    [14]
    Shi Wei, Wang Menghua. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12010. doi: 10.1029/2009JC005513
    [15]
    Hu Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118−2129. doi: 10.1016/j.rse.2009.05.012
    [16]
    Xing Qianguo, Hu Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113−126. doi: 10.1016/j.rse.2016.02.065
    [17]
    Keesing J K, Liu Dongyan, Fearns P, et al. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China[J]. Marine Pollution Bulletin, 2011, 62(6): 1169−1182. doi: 10.1016/j.marpolbul.2011.03.040
    [18]
    Wang Mengqiu, Hu Chuanmin. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote Sensing of Environment, 2016, 183: 350−367. doi: 10.1016/j.rse.2016.04.019
    [19]
    Garcia R A, Fearns P, Keesing J K, et al. Quantification of floating macroalgae blooms using the scaled algae index[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 26−42. doi: 10.1029/2012JC008292
    [20]
    Gordon H R, Wang Menghua. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443−452. doi: 10.1364/AO.33.000443
    [21]
    Wang Menghua. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations[J]. Applied Optics, 2007, 46(9): 1535−1547. doi: 10.1364/AO.46.001535
    [22]
    Qi Lin, Hu Chuanmin, Mikelsons K, et al. In search of floating algae and other organisms in global oceans and lakes[J]. Remote Sensing of Environment, 2020, 239: 111659. doi: 10.1016/j.rse.2020.111659
    [23]
    Qi Lin, Hu Chuanmin. To what extent can Ulva and Sargassum be detected and separated in satellite imagery?[J]. Harmful Algae, 2021, 103: 102001. doi: 10.1016/j.hal.2021.102001
  • Relative Articles

  • Cited by

    Periodical cited type(18)

    1. 张贻然,潘斌,徐夏,朱俊峰. 基于字典学习光谱解混的绿藻亚像元面积估计. 自然资源遥感. 2025(02): 88-95 .
    2. 李玲,锁子易,石立坚,王卿,焦俊男,唐君,陆应诚. HY-1C/D卫星数据的辽东湾海冰识别与估算. 遥感学报. 2025(04): 897-909 .
    3. 许源兴,孙琰,肖鹤,艾彬,刘大召. 基于色相角算法的珠江口赤潮遥感识别. 中山大学学报(自然科学版)(中英文). 2024(01): 96-104 .
    4. 陈旺,邵庆龙,周晓,刘金普,兰友国,余伟,胡玉新. 海洋一号卫星观测任务规划算法设计及系统应用. 中国空间科学技术. 2024(02): 145-153 .
    5. 赵学凯,郭凯元,周运浩,贾莉园,杨智博,张勤旭,张明亮. 辽河口悬浮泥沙时空变化特征及其动力因素分析. 海洋学研究. 2024(01): 36-46 .
    6. 杨柳,汪明秀,朱小波,唐君,刘建强,丁静,邢前国,李满春,陆应诚. MODIS对低聚集度近海绿潮的监测效能分析. 遥感技术与应用. 2024(04): 952-960 .
    7. 施逸,毛志华,张艺蔚,黄海清,朱乾坤. HY-1 C/D卫星海岸带成像仪在轨地理定位方法. 航天返回与遥感. 2024(04): 109-123 .
    8. 林明森,叶小敏,马超飞,邹斌. 中国海洋水色观测卫星及其应用. 先进小卫星技术(中英文). 2024(01): 30-46 .
    9. 张昊睿,常俊芳,付弘涛,吴宇华,陈健. 浒苔遥感自动预处理及信息提取的设计与应用. 海洋开发与管理. 2024(10): 145-154 .
    10. 杨彬,郭金源,何鹏,叶小敏,刘建强. 面向HY-1C卫星CZI陆地遥感图像的云检测方法研究. 遥感学报. 2023(01): 55-67 .
    11. 王鑫华,刘海龙,邢前国,刘建强,丁静,金松. HY-1卫星CZI影像在黄海绿潮监测的应用. 遥感学报. 2023(01): 146-156 .
    12. 刘建强 ,叶小敏 ,宋庆君 ,丁静 ,邹斌 . HY-1C/D海洋水色卫星产品体系及其典型应用. 遥感学报. 2023(01): 1-13 .
    13. 戴荣凡,韩静雨,王密,陈儒,彭涛,张昊楠. HY-1C/D海岸带成像仪全视场整体相对辐射校正方法研究. 遥感学报. 2023(05): 1121-1132 .
    14. 麻德明,张秀林,田梓文,王佳新. 无人机遥感影像浒苔信息提取方法. 测绘通报. 2023(08): 24-28 .
    15. 孙琳,毕卫红,刘桐,武家晴,张保军,付广伟,金娃,王兵,付兴虎. 应用机载高光谱与机器学习法的绿藻识别算法研究. 光谱学与光谱分析. 2023(11): 3637-3643 .
    16. 吴克,王常颖,黄睿,李华伟. HY-1C/D CZI多光谱影像云覆盖与耀斑区域绿潮自动提取方法研究. 海洋学报. 2023(10): 168-182 . 本站查看
    17. 唐君,陆应诚,焦俊男,刘建强,胡连波,丁静,邢前国,王福涛,宋庆君,陈艳拢,田礼乔,王心源,刘锦超. 中国近海绿潮生物量的卫星光学遥感估算. 遥感学报. 2023(11): 2484-2498 .
    18. 刘建强,石淇,宋妍,邹亚荣,梁超. 基于HY-1C卫星的呼伦湖蓝藻遥感监测及对比研究. 地理信息世界. 2022(05): 35-38+48 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (918) PDF downloads(129) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return