Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Lu Yao,Liu Huan,Wu Jiaxue. Turbulence denoising based on proper orthogonal decomposition[J]. Haiyang Xuebao,2022, 44(9):132–144 doi: 10.12284/hyxb2022089
Citation: Lu Yao,Liu Huan,Wu Jiaxue. Turbulence denoising based on proper orthogonal decomposition[J]. Haiyang Xuebao,2022, 44(9):132–144 doi: 10.12284/hyxb2022089

Turbulence denoising based on proper orthogonal decomposition

doi: 10.12284/hyxb2022089
  • Received Date: 2021-09-09
  • Rev Recd Date: 2021-12-28
  • Available Online: 2022-03-25
  • Publish Date: 2022-08-29
  • In the studies of turbulence in coastal and estuary, the turbulence data from field observation is often influenced by noise, which leads to deviate the estimation of turbulence properties. Proper orthogonal decomposition is a method which decompose and reconstruct the flow structure in energy filed. Based on this method, the turbulence data containing noise is denoised combined with numerical experiments and field observation data. The results show that: (1) Proper orthogonal decomposition can remove the noise in turbulence effectively. The percentage of retained energy in reconstruction should be consistent with the percentage of turbulence energy in the raw signal. The results of denoising are related to the percentage of noise, the higher the percentage of noise, the effect of denoising is more obvious. (2) In the field observation, the percentage of noise in the slack tide is obviously higher than the noise which in the non-slack tide, while the percentage of noise in the horizontal direction is higher than that in the vertical direction. The estimation of each turbulence properties is more reasonable after using the proper orthogonal decomposition to denoise.
  • loading
  • [1]
    Wright L D. Benthic boundary layers of estuarine and coastal environments[J]. Reviews in Aquatic Sciences, 1989, 1(1): 75−96.
    [2]
    Sukhodolov A N, Uijttewaal W S J. Assessment of a river reach for environmental fluid dynamics studies[J]. Journal of Hydraulic Engineering, 2010, 136(11): 880−888. doi: 10.1061/(ASCE)HY.1943-7900.0000267
    [3]
    刘欢, 吴超羽. 河口湍流数据现场采集和后处理[J]. 海洋工程, 2011, 29(2): 122−128, 134. doi: 10.3969/j.issn.1005-9865.2011.02.018

    Liu Huan, Wu Chaoyu. Turbulence measurement in estuary and data post-processing[J]. The Ocean Engineering, 2011, 29(2): 122−128, 134. doi: 10.3969/j.issn.1005-9865.2011.02.018
    [4]
    García C M, Cantero M I, Niño Y, et al. Turbulence measurements with acoustic Doppler velocimeters[J]. Journal of Hydraulic Engineering, 2005, 131(12): 1062−1073. doi: 10.1061/(ASCE)0733-9429(2005)131:12(1062)
    [5]
    Blanckaert K, Lemmin U. Means of noise reduction in acoustic turbulence measurements[J]. Journal of Hydraulic Research, 2006, 44(1): 3−17. doi: 10.1080/00221686.2006.9521657
    [6]
    Thomson J, Polagye B, Durgesh V, et al. Measurements of turbulence at two tidal energy sites in puget sound, WA[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 363−374. doi: 10.1109/JOE.2012.2191656
    [7]
    李士心, 刘鲁源, 舒玮. 子波去噪技术在湍流信号处理中的应用[J]. 实验力学, 2001, 16(4): 433−437. doi: 10.3969/j.issn.1001-4888.2001.04.013

    Li Shixin, Liu Luyuan, Shu Wei. Turbulent signal processing based on wavelet transform de-noising technique[J]. Journal of Experimental Mechanics, 2001, 16(4): 433−437. doi: 10.3969/j.issn.1001-4888.2001.04.013
    [8]
    汪健生, 张金钟, 舒玮. 提取壁湍流相干结构的数字滤波法[J]. 力学学报, 1995, 27(4): 398−405.

    Wang Jiansheng, Zhang Jinzhong, Shu Wei. The digital filter method of extracting the coherent structurein wall turbulence[J]. Acta Mechanica Sinica, 1995, 27(4): 398−405.
    [9]
    Kumar P, Foufoula-Georgiou E. Wavelet analysis for geophysical applications[J]. Reviews of Geophysics, 1997, 35(4): 385−412. doi: 10.1029/97RG00427
    [10]
    Piera J, Roget E, Catalan J. Turbulent patch identification in microstructure profiles: a method based on wavelet denoising and thorpe displacement analysis[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1390−1402. doi: 10.1175/1520-0426(2002)019<1390:TPIIMP>2.0.CO;2
    [11]
    张斌, 王彤, 谷传纲, 等. 改进的小波阈值消噪法在湍流信号处理中的应用[J]. 工程热物理学报, 2009, 30(3): 407−410. doi: 10.3321/j.issn:0253-231X.2009.03.012

    Zhang Bin, Wang Tong, Gu Chuan’gang, et al. Application of improved wavelet threshold de-noising in turbulent signal processing[J]. Journal of Engineering Thermophysics, 2009, 30(3): 407−410. doi: 10.3321/j.issn:0253-231X.2009.03.012
    [12]
    Gupta A, Joshi S D, Prasad S. On a new approach for estimating wavelet matched to signal[C]//Bombay: Proceedings of the Eighth National Conference on Communications, 2002: 180−184.
    [13]
    Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5−28. doi: 10.1017/S0022112010001217
    [14]
    鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报, 2012, 34(5): 39−49.

    Lu Yuanzheng, Wu Jiaxue, Liu Huan. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Haiyang Xuebao, 2012, 34(5): 39−49.
    [15]
    Durgesh V, Thomson J, Richmond M C, et al. Noise correction of turbulent spectra obtained from acoustic Doppler velocimeters[J]. Flow Measurement and Instrumentation, 2014, 37: 29−41. doi: 10.1016/j.flowmeasinst.2014.03.001
    [16]
    Citriniti J H, George W K. Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2000, 418: 137−166. doi: 10.1017/S0022112000001087
    [17]
    Durgesh V, Semaan R C, Naughton J W. Revealing unsteady flow structure from flow visualization images[J]. The European Physical Journal Special Topics, 2010, 182(1): 35−50. doi: 10.1140/epjst/e2010-01224-1
    [18]
    Luo Zhendong, Du Juan, Xie Zhenghui, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31−46. doi: 10.1002/nme.3161
    [19]
    Liu Zhiyu, Wei Hao. Estimation to the turbulent kinetic energy dissipation rate and bottom shear stress in the tidal bottom boundary layer of the Yellow Sea[J]. Progress in Natural Science, 2007, 17(3): 289−297. doi: 10.1080/10020070612331343260
    [20]
    Fan Renfu, Wei Hao, Zhao Liang, et al. Identify the impacts of waves and tides to coastal suspended sediment concentration based on high-frequency acoustic observations[J]. Marine Geology, 2019, 408: 154−164. doi: 10.1016/j.margeo.2018.12.005
    [21]
    Guerra M, Thomson J. Turbulence measurements from five-beam acoustic Doppler current profilers[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1267−1284. doi: 10.1175/JTECH-D-16-0148.1
    [22]
    PEF. 3D Turbulent Wind Generation[EB/OL]. (2015–12–14) [2021–09–08]. https://www.mathworks.com/matlabcentral/fileexchange/54491-3d-turbulent-wind-generation
    [23]
    Huang Chuanjiang, Ma Hongyu, Guo Jingsong, et al. Calculation of turbulent dissipation rate with acoustic Doppler velocimeter[J]. Limnology and Oceanography: Methods, 2018, 16(5): 265−272. doi: 10.1002/lom3.10243
    [24]
    刘志宇. 强潮驱陆架海中的湍流与混合[D]. 青岛: 中国海洋大学, 2009.

    Liu Zhiyu. Turbulence and mixing in tidally energetic shelf seas[D]. Qingdao: Ocean University of China, 2009.
    [25]
    Romagnoli M, García C M, Lopardo R A. Signal postprocessing technique and uncertainty analysis of ADV turbulence measurements on free hydraulic jumps[J]. Journal of Hydraulic Engineering, 2012, 138(4): 353−357. doi: 10.1061/(ASCE)HY.1943-7900.0000507
    [26]
    Sreenivasan K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778−2784. doi: 10.1063/1.868656
    [27]
    Le Couturier M N, Grochowski N T, Heathershaw A, et al. Turbulent and macro-turbulent structures developed in the benthic boundary layer downstream of topographic features[J]. Estuarine, Coastal and Shelf Science, 2000, 50(6): 817−833. doi: 10.1006/ecss.1999.0602
    [28]
    刘欢, 吴超羽, 许炜铭, 等. 珠江河口底边界层湍流特征量研究[J]. 海洋工程, 2009, 27(1): 62−69, 76. doi: 10.3969/j.issn.1005-9865.2009.01.010

    Liu Huan, Wu Chaoyu, Xu Weiming, et al. Research on turbulent features of the bottom boundary layer in the Pearl River[J]. The Ocean Engineering, 2009, 27(1): 62−69, 76. doi: 10.3969/j.issn.1005-9865.2009.01.010
    [29]
    刘志宇, 魏皓. 黄海潮流底边界层内湍动能耗散率与底应力的估计[J]. 自然科学进展, 2007, 17(3): 362−369. doi: 10.3321/j.issn:1002-008X.2007.03.011

    Liu Zhiyu, Wei Hao. Estimation to the turbulent kinetic energy dissipation rate and bottom shear stress in the tidal bottom boundary layer of the Yellow Sea[J]. Progress in Natural Science, 2007, 17(3): 362−369. doi: 10.3321/j.issn:1002-008X.2007.03.011
    [30]
    Lumley J L, Terray E A. Kinematics of turbulence convected by a random wave field[J]. Journal of Physical Oceanography, 1983, 13(11): 2000−2007. doi: 10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2
    [31]
    Trowbridge J, Elgar S. Turbulence measurements in the surf zone[J]. Journal of Physical Oceanography, 2000, 31(8): 2403−2417.
    [32]
    Batchelor G K. The Theory of Homogeneous Turbulence[M]. Cambridge: Cambridge University Press, 1953.
    [33]
    Feddersen F. Quality controlling surf zone acoustic Doppler velocimeter observations to estimate the turbulent dissipation rate[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(12): 2039−2055. doi: 10.1175/2010JTECHO783.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (475) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return