Citation: | Wang Lifeng,Xin Liping,Liu Jiashuo, et al. Research on identification of marine oil spill based on thermal infrared video image monitoring[J]. Haiyang Xuebao,2022, 44(5):148–160 doi: 10.12284/hyxb2022063 |
[1] |
Lehr W J, Cekirge H M, Fraga R J, et al. Empirical studies of the spreading of oil spills[J]. Oil and Petrochemical Pollution, 1984, 2(1): 7−11. doi: 10.1016/S0143-7127(84)90637-9
|
[2] |
Leifer I, Lehr W J, Simecek-Beatty D, et al. State of the art satellite and airborne marine oil spill remote sensing: application to the BP Deepwater Horizon oil spill[J]. Remote Sensing of Environment, 2012, 124: 185−209. doi: 10.1016/j.rse.2012.03.024
|
[3] |
Svejkovsky J, Hess M, Muskat J, et al. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing[J]. Marine Pollution Bulletin, 2016, 110(1): 162−176. doi: 10.1016/j.marpolbul.2016.06.066
|
[4] |
李四海. 海上溢油遥感探测技术及其应用进展[J]. 遥感信息, 2004(2): 53−57. doi: 10.3969/j.issn.1000-3177.2004.02.015
Li Sihai. Application of remote sensing for oil slicks detecting and its progress[J]. Remote Sensing Information, 2004(2): 53−57. doi: 10.3969/j.issn.1000-3177.2004.02.015
|
[5] |
Fingas M, Brown C E. A review of oil spill remote sensing[J]. Sensors, 2017, 18(2): 91.
|
[6] |
景海朋. 基于红外图像的水面溢油检测及系统实现[D]. 西安: 西安电子科技大学, 2014.
Jing Haipeng. Surface oil spill detection and system implementation based on infrared image[D]. Xi’an: Xidian University, 2014.
|
[7] |
蒋兴伟, 何贤强, 林明森, 等. 中国海洋卫星遥感应用进展[J]. 海洋学报, 2019, 41(10): 113−124.
Jiang Xingwei, He Xianqiang, Lin Mingsen, et al. Progresses on ocean satellite remote sensing application in China[J]. Haiyang Xuebao, 2019, 41(10): 113−124.
|
[8] |
任广波, 过杰, 马毅, 等. 海面溢油无人机高光谱遥感检测与厚度估算方法[J]. 海洋学报, 2019, 41(5): 146−158.
Ren Guangbo, Guo Jie, Ma Yi, et al. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging[J]. Haiyang Xuebao, 2019, 41(5): 146−158.
|
[9] |
Lacava T, Ciancia E, Coviello I, et al. A MODIS-based robust satellite technique (RST) for timely detection of oil spilled areas[J]. Remote Sensing, 2017, 9(2): 128. doi: 10.3390/rs9020128
|
[10] |
Shu Yuanming, Li J, Yousif H, et al. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring[J]. Remote Sensing of Environment, 2010, 114(9): 2026−2035. doi: 10.1016/j.rse.2010.04.009
|
[11] |
陈韩, 谢涛, 方贺, 等. 基于SAR极化比和纹理特征的海面溢油识别方法[J]. 海洋学报, 2019, 41(9): 181−190.
Chen Han, Xie Tao, Fang He, et al. Sea surface oil spill identification method based on SAR polarization ratio and texture feature[J]. Haiyang Xuebao, 2019, 41(9): 181−190.
|
[12] |
尹奇志, 初秀民, 孙星, 等. 船舶溢油监测方法的应用现状及发展趋势[J]. 船海工程, 2010, 39(5): 246−250.
Yin Qizhi, Chu Xiumin, Sun Xing, et al. Application and development trend of detecting techniques for oil slick from vessel[J] Ship & Ocean Engineering, 2010, 39(5): 246−250.
|
[13] |
张果. 近距离海面溢油监测系统的设计与实现[D]. 西安: 西安电子科技大学, 2018.
Zhang Guo. Design and implementation of close-range sea surface spill oil monitoring system[D]. Xi’an: Xidian University, 2018.
|
[14] |
Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared thermography for condition monitoring—A review[J]. Infrared Physics & Technology, 2013, 60: 35−55.
|
[15] |
De Carolis G, Adamo M, Pasquariello G. On the estimation of thickness of marine oil slicks from sun-glittered, near-infrared MERIS and MODIS imagery: the Lebanon oil spill case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 559−573. doi: 10.1109/TGRS.2013.2242476
|
[16] |
Niclòs R, Doña C, Valor E, et al. Thermal-infrared spectral and angular characterization of crude oil and seawater emissivities for oil slick identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5387−5395. doi: 10.1109/TGRS.2013.2288517
|
[17] |
Lu Yingcheng, Zhan Wenfeng, Hu Chuanmin. Detecting and quantifying oil slick thickness by thermal remote sensing: a ground-based experiment[J]. Remote Sensing of Environment, 2016, 181: 207−217. doi: 10.1016/j.rse.2016.04.007
|
[18] |
Zhou Yang, Jiang Lu, Lu Yingcheng, et al. Thermal infrared contrast between different types of oil slicks on top of water bodies[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1042−1045. doi: 10.1109/LGRS.2017.2694609
|
[19] |
Akula A, Ghosh R, Kumar S, et al. Moving target detection in thermal infrared imagery using spatiotemporal information[J]. Journal of the Optical Society of America A, 2013, 30(8): 1492−1501. doi: 10.1364/JOSAA.30.001492
|
[20] |
李艳荻, 徐熙平. 基于超像素时空特征的视频显著性检测方法[J]. 光学学报, 2019, 39(1): 315−322.
Li Yandi, Xu Xiping. Video saliency detection method based on spatiotemporal features of superpixels[J]. Acta Optica Sinica, 2019, 39(1): 315−322.
|
[21] |
王利锋, 辛丽平, 于波, 等. 基于热红外图像的海面油膜面积的测算方法[J]. 海洋通报, 2020, 39(6): 750−760.
Wang Lifeng, Xin Liping, Yu Bo, et al. A calculation method for oil film area at sea surface based on thermal infrared image[J]. Marine Science Bulletin, 2020, 39(6): 750−760.
|
[22] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
|
[23] |
刘伯运, 赵博, 王腾. 基于连续帧图像面积变化的火灾探测方法[J]. 消防科学与技术, 2016, 35(12): 1723−1725. doi: 10.3969/j.issn.1009-0029.2016.12.022
Liu Boyun, Zhao Bo, Wang Teng. A fire detection method based on the area variety of consecutive frames[J]. Fire Science and Technology, 2016, 35(12): 1723−1725. doi: 10.3969/j.issn.1009-0029.2016.12.022
|
[24] |
刘松涛, 刘振兴, 姜宁. 基于融合显著图和高效子窗口搜索的红外目标分割[J]. 自动化学报, 2018, 44(12): 2210−2221.
Liu Songtao, Liu Zhenxing, Jiang Ning. Target segmentation of infrared image using fused saliency map and efficient subwindow search[J]. Acta Automatica Sinica, 2018, 44(12): 2210−2221.
|