Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 6
Jul.  2022
Turn off MathJax
Article Contents
Chen Liang,Yin Zhengxin,Liu Zijing, et al. Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean[J]. Haiyang Xuebao,2022, 44(6):80–88 doi: 10.12284/hyxb2022051
Citation: Chen Liang,Yin Zhengxin,Liu Zijing, et al. Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean[J]. Haiyang Xuebao,2022, 44(6):80–88 doi: 10.12284/hyxb2022051

Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean

doi: 10.12284/hyxb2022051
  • Received Date: 2021-06-18
  • Rev Recd Date: 2021-09-24
  • Available Online: 2022-07-13
  • Publish Date: 2022-07-13
  • In order to better understand the sedimentary rate changes in the Caroline area which is located in the north of West Pacific Warm Pool, a comprehensive dating method was carried out by using radiocarbon testing(14C), oxygen isotope and paleomagnetism on a gravity core from the Caroline area of the western Pacific Ocean. 14C data provide the age of the upper section since 44.3 ka BP for this core. Subsequently, the age framework since MIS4 (about 80 ka) which corresponds to the depth of 125 cm was established by using oxygen isotope and relative paleointensity (RPI) data, while the upper part also considered the 14C data. Further analysis revealed that there was an obvious sedimentary discontinuity at the depth of 126 cm to 127 cm in this core, although it has been beyond the range of 14C dating, but the paleomagnetic results show that the core formed in Brunhes period, and the relationship between RPI and oxygen isotope data under the hiatus provide a robust evidence that the age is from 180 ka to 130 ka in the bottom. At the end the deposition rate of the core was obtained, which is 1 cm/ka to 2 cm/ka, and it is consistent before and after the deposition hiatus. At the same time, the disparity of the deposition rate for each dating method indicated that there was a large deviation of 14C data in one layer maybe due to the high rate of foraminiferal shell breaking.
  • loading
  • [1]
    李保华, 赵泉鸿, 陈民本, 等. 南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义[J]. 微体古生物学报, 2001, 18(1): 1−9. doi: 10.3969/j.issn.1000-0674.2001.01.001

    Li Baohua, Zhao Quanhong, Chen Minben, et al. Late Quaternary evolution of planktonic foraminifera in the southern South China Sea and their paleoceanographic significance[J]. Acta Micropalaeontologica Sinica, 2001, 18(1): 1−9. doi: 10.3969/j.issn.1000-0674.2001.01.001
    [2]
    汪品先, 闵秋宝, 卞云华, 等. 十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义[J]. 地质学报, 1986, 60(3): 215−225.

    Wang Pinxian, Min Qiubao, Bian Yunhua, et al. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130, 000 years and their paleo-oceanographic implications[J]. Acta Geologic Sinica, 1986, 60(3): 215−225.
    [3]
    庄丽华, 常凤鸣, 李铁刚, 等. 南黄海EY02-2孔底栖有孔虫群落特征与全新世沉积速率[J]. 海洋地质与第四纪地质, 2002, 22(4): 7−14.

    Zhuang Lihua, Chang Fengming, Li Tiegang, et al. Foraminiferal faunas and Holocene sedimentation rates of core EY02-2 in the south Yellow Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 7−14.
    [4]
    丁旋, 方念乔. 赤道西太平洋MD98-2182岩芯末次冰期以来的季风和厄尔尼诺事件记录[J]. 中国科学:地球科学, 2012, 55(10): 1706−1715. doi: 10.1007/s11430-012-4478-0

    Ding Xuan, Fang Nianqiao. The monsoon and El Niño events during the last glaciation as recorded in core MD98-2182 from the western equatorial Pacific Ocean[J]. Science China Earth Sciences, 2012, 55(10): 1706−1715. doi: 10.1007/s11430-012-4478-0
    [5]
    Zhang Guoliang, Zhang Ji, Wang Shuai, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
    [6]
    Johnson G C, Toole J M. Flow of deep and bottom waters in the Pacific at 10°N[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(2): 371−394. doi: 10.1016/0967-0637(93)90009-R
    [7]
    孟庆勇, 李安春, 李铁刚, 等. 西菲律宾海沉积物200 ka以来的地球磁场相对强度记录及其年代学意义[J]. 中国科学 D辑:地球科学, 2009, 52(8): 1115−1126. doi: 10.1007/s11430-009-0119-7

    Meng Qingyong, Li Anchun, Li Tiegang, et al. Relative paleointensity of the geomagnetic field during the past 200 ka from the West Philippine Sea and its chronological significance[J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1115−1126. doi: 10.1007/s11430-009-0119-7
    [8]
    赵京涛. 热带西太平洋边缘晚第四纪以来的古环境研究[D]. 青岛: 中国科学院海洋研究所, 2007.

    Zhao Jingtao. Paleoenvironment evolution in the margin region of tropical western pacific during the late Quaternary[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2007.
    [9]
    Kawahata H, Suzuki A, Ahagon N. Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330, 000 years[J]. Marine Geology, 1998, 149(1/4): 155−176.
    [10]
    Stuiver M, Reimer P J, Reimer R W. CALIB 8.2[EB/OL]. [2021−08−21]. http://calib.org/calib/
    [11]
    Heaton T J, Köhler P, Butzin M, et al. Marine20–the marine radiocarbon age calibration curve (0–55, 000 cal BP)[J]. Radiocarbon, 62(4): 779−820.
    [12]
    Sagnotti L. Demagnetization Analysis in Excel (DAIE). An open source workbook in Excel for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels[J]. Annals of Geophysics, 2013, 56(1): D0114.
    [13]
    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.
    [14]
    Guyodo Y, Valet J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733): 249−252. doi: 10.1038/20420
    [15]
    Mix A C, Ruddiman W F. Oxygen-isotope analyses and Pleistocene ice volumes[J]. Quaternary Research, 1984, 21(1): 1−20. doi: 10.1016/0033-5894(84)90085-1
    [16]
    Shackleton N. Oxygen isotope analyses and Pleistocene temperatures re-assessed[J]. Nature, 1967, 215(5096): 15−17. doi: 10.1038/215015a0
    [17]
    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 6093−6095. doi: 10.1029/94JB03098
    [18]
    Roberts A P, Tauxe L, Heslop D. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges[J]. Quaternary Science Reviews, 2013, 61: 1−16. doi: 10.1016/j.quascirev.2012.10.036
    [19]
    Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice[J]. Reviews of Geophysics, 1993, 31(3): 319−354. doi: 10.1029/93RG01771
    [20]
    Guyodo Y, Valet J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200, 000 years[J]. Earth and Planetary Science Letters, 1996, 143(1-4): 23−36. doi: 10.1016/0012-821X(96)00121-5
    [21]
    Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043): 802−805. doi: 10.1038/nature03674
    [22]
    Néel L. Some theoretical aspects of rock-magnetism[J]. Advances in Physics, 1955, 4(14): 191−243. doi: 10.1080/00018735500101204
    [23]
    Levi S, Banerjee S K. On the possibility of obtaining relative paleointensities from lake sediments[J]. Earth and Planetary Science Letters, 1976, 29(1): 219−226. doi: 10.1016/0012-821X(76)90042-X
    [24]
    仇士华, 蔡莲珍. 14C测年技术新进展[J]. 第四纪研究, 1997, 17(3): 223−229.

    Qiu Shihua, Cai Lianzhen. Recent advancement in radiocarbon dating[J]. Quaternary Sciences, 1997, 17(3): 223−229.
    [25]
    刘志杰, 余佳, 孙晓燕, 等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究, 2016, 36(2): 492−502. doi: 10.11928/j.issn.1001-7410.2016.02.24

    Liu Zhijie, Yu Jia, Sun Xiaoyan, et al. A discussion of marine sediments 14C data integration and correction[J]. Quaternary Sciences, 2016, 36(2): 492−502. doi: 10.11928/j.issn.1001-7410.2016.02.24
    [26]
    Mekik F. Radiocarbon dating of planktonic foraminifer shells: a cautionary tale[J]. Paleoceanography and Paleoclimatology, 2014, 29(1): 13−29.
    [27]
    Barker S, Broecker W, Clark E, et al. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone[J]. Paleoceanography and Paleoclimatology, 2007, 22(2): PA2205.
    [28]
    Lai Zhongping, Mischke S, Madsen D. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Journal of Paleolimnology, 2014, 51(2): 197−210. doi: 10.1007/s10933-013-9710-1
    [29]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [30]
    Stuiver M, Reimer P J, Bard E, et al. INTCAL98 radiocarbon age calibration, 24, 000–0 cal BP[J]. Radiocarbon, 1998, 40(3): 1041−1083. doi: 10.1017/S0033822200019123
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (254) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return