Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
He Libin,Huang Zhen,Wu Shuiqing, et al. Transcriptome analysis identifies candidate genes related to albinism mechanism in the skin of the Picasso clownfish[J]. Haiyang Xuebao,2022, 44(2):67–76 doi: 10.12284/hyxb2022050
Citation: He Libin,Huang Zhen,Wu Shuiqing, et al. Transcriptome analysis identifies candidate genes related to albinism mechanism in the skin of the Picasso clownfish[J]. Haiyang Xuebao,2022, 44(2):67–76 doi: 10.12284/hyxb2022050

Transcriptome analysis identifies candidate genes related to albinism mechanism in the skin of the Picasso clownfish

doi: 10.12284/hyxb2022050
  • Received Date: 2021-08-12
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-12-27
  • Publish Date: 2022-02-01
  • Picasso clownfish is named for its disorderly and abstract distribution of white patches in its skin. At the same time, due to the irregular and scarce formation of white patches, it belongs to a valuable clownfish. Therefore, analyzing the formation mechanism of skin white spots in Picasso clownfish can provide a theoretical basis for the artificial breeding of Picasso clownfish. In this study, we sequences the transcriptome of the skin of three color blocks (black, yellow and white) in the same part of the body between the dorsal fin and hip fin of Picasso clownfish. The results show that there are a large number of differentially expressed genes (DEGs) in white skin compared with yellow and black skin. Among them, the genes in the signal pathways related to melanin production (such as melanin production, hedgehog and Wnt signal pathways) show a downward trend in white skin tissue. The expression of upstream regulatory genes (such as ednrba and mitfa) decrease gradually from black to yellow to white skin tissue, but the expression of downstream core genes involved in melanin synthesis (including Tyr, tyrp1b and dct) decreases significantly in white skin assembly. Finally, the validity of transcriptome data is verified by fluorescence quantitative PCR. The results of this study will provide a theoretical basis for future people to interfere with gene expression to regulate clownfish body color.
  • [1]
    Braasch I, Volff J N, Schartl M. The evolution of teleost pigmentation and the fish-specific genome duplication[J]. Journal of Fish Biology, 2008, 73(8): 1891−1918. doi: 10.1111/j.1095-8649.2008.02011.x
    [2]
    Hubbard J K, Uy J A C, Hauber M E, et al. Vertebrate pigmentation: from underlying genes to adaptive function[J]. Trends in Genetics, 2010, 26(5): 231−239. doi: 10.1016/j.tig.2010.02.002
    [3]
    Gordon A K. The effect of diet and age-at-weaning on growth and survival of clownfish Amphiprion percula (Pisces: Pomacentridae)[D]. Grahamstown: Rhodes University, 1999.
    [4]
    Marcionetti A, Rossier V, Bertrand J A M, et al. First draft genome of an iconic clownfish species (Amphiprion frenatus)[J]. Molecular Ecology Resources, 2018, 18(5): 1092−1101. doi: 10.1111/1755-0998.12772
    [5]
    He Libin, Wu Shuiqing, Luo Huiyu, et al. The complete mitochondrial genome of the Picasso clownfish: genomic comparisons and phylogenetic inference among Amphiprioninae[J]. Mitochondrial DNA: Part B, 2020, 5(3): 2990−2991. doi: 10.1080/23802359.2020.1797554
    [6]
    Oetting W S, King R A. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism[J]. Human Mutation, 1999, 13(2): 99−115. doi: 10.1002/(SICI)1098-1004(1999)13:2<99::AID-HUMU2>3.0.CO;2-C
    [7]
    Oetting W S. Albinism[J]. Current Opinion in Pediatrics, 1999, 11(6): 565−571. doi: 10.1097/00008480-199912000-00016
    [8]
    Griffiths G M. Albinism and immunity: whats the link?[J]. Current Molecular Medicine, 2002, 2(5): 479−483. doi: 10.2174/1566524023362258
    [9]
    Xing Lili, Sun Lina, Liu Shilin, et al. Transcriptome analysis provides insights into the mechanism of albinism during different pigmentation stages of the albino sea cucumber Apostichopus japonicus[J]. Aquaculture, 2018, 486: 148−160. doi: 10.1016/j.aquaculture.2017.12.016
    [10]
    Cox M P, Peterson D A, Biggs P J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data[J]. BMC Bioinformatics, 2010, 11(1): 485. doi: 10.1186/1471-2105-11-485
    [11]
    Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [12]
    Li Heng, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [13]
    Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9): 1650−1667. doi: 10.1038/nprot.2016.095
    [14]
    Young M D, Wakefield M J, Smyth G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biology, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
    [15]
    Xie Chen, Mao Xizeng, Huang Jiaju, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(S2): W316−W322.
    [16]
    Ding Kui, Zhang Libin, Sun Lina, et al. Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 30: 143−157. doi: 10.1016/j.cbd.2019.02.008
    [17]
    Lavado A, Jeffery G, Tovar V, et al. Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin[J]. Journal of Neurochemistry, 2006, 96(4): 1201−1211. doi: 10.1111/j.1471-4159.2006.03657.x
    [18]
    Smircich P, Eastman G, Bispo S, et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi[J]. BMC Genomics, 2015, 16(1): 443. doi: 10.1186/s12864-015-1563-8
    [19]
    Ren Hangxing, Wang Gaofu, Jiang Jing, et al. Comparative transcriptome and histological analyses provide insights into the prenatal skin pigmentation in goat (Capra hircus)[J]. Physiological Genomics, 2017, 49(12): 703−711. doi: 10.1152/physiolgenomics.00072.2017
    [20]
    Cho M, Ryu M, Jeong Y, et al. Cardamonin suppresses melanogenesis by inhibition of Wnt/β-catenin signaling[J]. Biochemical and Biophysical Research Communications, 2009, 390(3): 500−505. doi: 10.1016/j.bbrc.2009.09.124
    [21]
    Dunn K J, Brady M, Ochsenbauer-Jambor C, et al. WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action[J]. Pigment Cell Research, 2005, 18(3): 167−180. doi: 10.1111/j.1600-0749.2005.00226.x
    [22]
    Nagao Y, Suzuki T, Shimizu A, et al. Sox5 functions as a fate switch in medaka pigment cell development[J]. PLoS Genetics, 2014, 10(4): 1004246. doi: 10.1371/journal.pgen.1004246
    [23]
    Tief K, Hahne M, Schmidt A, et al. Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain[J]. European Journal of Biochemistry, 1996, 241(1): 12−16. doi: 10.1111/j.1432-1033.1996.0012t.x
    [24]
    Ghanem G, Fabrice J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma[J]. Molecular Oncology, 2011, 5(2): 150−155. doi: 10.1016/j.molonc.2011.01.006
    [25]
    Picardo M, Cardinali G. The genetic determination of skin pigmentation: KITLG and the KITLG/c-Kit pathway as key players in the onset of human familial pigmentary diseases[J]. Journal of Investigative Dermatology, 2011, 131(6): 1182−1185. doi: 10.1038/jid.2011.67
    [26]
    Fang Dong, Tsuji Y, Setaluri V. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF[J]. Nucleic Acids Research, 2002, 30(14): 3096−3106. doi: 10.1093/nar/gkf424
    [27]
    Seo E Y, Jin S P, Sohn K C, et al. UCHL1 regulates melanogenesis through controlling MITF stability in human melanocytes[J]. Journal of Investigative Dermatology, 2017, 137(8): 1757−1765. doi: 10.1016/j.jid.2017.03.024
    [28]
    George A, Zand D J, Hufnagel R B, et al. Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness[J]. The American Journal of Human Genetics, 2016, 99(6): 1388−1394. doi: 10.1016/j.ajhg.2016.11.004
    [29]
    Hornyak T J, Hayes D J, Chiu L Y, et al. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf[J]. Mechanisms of Development, 2001, 101(1/2): 47−59.
  • Relative Articles

  • 4-11helibing附件材料.rar
  • Cited by

    Periodical cited type(5)

    1. 孙伟恒,孙志宾,王新安,马爱军,李迎娣,苟冬惠,于宏,李昊喆,Vorathep Muthuwan,曲江波,洪宜展. 眼斑双锯鱼(Amphiprion ocellaris)发育中体色花纹时序发生的色素细胞变化和控制基因表达的分析 Ⅰ.胚胎时期. 海洋与湖沼. 2024(02): 489-498 .
    2. 谭泽宇,李涛,姜敬哲,黄小林,杨育凯. 喷点雪印小丑鱼的胚胎及仔、稚、幼鱼形态发育观察. 南方水产科学. 2024(02): 73-82 .
    3. 孙志宾,孙伟恒,王新安,马爱军,黄智慧,李迎娣,苟冬惠,于宏,闫鹏飞,田蜜,Vorathep Muthuwan,曲江波,洪宜展. 眼斑双锯鱼(Amphiprion ocellaris)发育中体色花纹时序发生的色素细胞变化和控制基因表达的分析Ⅱ.仔稚幼鱼时期. 海洋与湖沼. 2024(03): 756-764 .
    4. 谢金洋,李帅帅,薛文博,蔡康宁,赵金良,赵岩. 鳜体色图案区转录组和酪氨酸酶家族基因在发育过程中的表达. 中国水产科学. 2024(05): 501-512 .
    5. 徐慧敏,巨丹丹,龚兵,肖明松. 基于Illumina HiSeq平台的翘嘴红鲌转录组测序分析. 安徽科技学院学报. 2023(06): 49-56 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.6 %FULLTEXT: 26.6 %META: 67.2 %META: 67.2 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.3 %其他: 0.3 %China: 0.8 %China: 0.8 %Rochester: 1.3 %Rochester: 1.3 %Seattle: 0.8 %Seattle: 0.8 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 1.0 %[]: 1.0 %上海: 0.3 %上海: 0.3 %东京: 0.6 %东京: 0.6 %中山: 0.1 %中山: 0.1 %九龙城: 0.1 %九龙城: 0.1 %伊斯帕塔: 0.4 %伊斯帕塔: 0.4 %兰州: 0.1 %兰州: 0.1 %北京: 4.2 %北京: 4.2 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %厦门: 1.5 %厦门: 1.5 %台北: 5.5 %台北: 5.5 %台州: 0.1 %台州: 0.1 %吉林: 0.1 %吉林: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大同: 0.1 %大同: 0.1 %天津: 0.1 %天津: 0.1 %威海: 0.3 %威海: 0.3 %宁波: 0.6 %宁波: 0.6 %宣城: 0.3 %宣城: 0.3 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.1 %广州: 0.1 %廊坊: 0.3 %廊坊: 0.3 %张家口: 1.1 %张家口: 1.1 %成都: 0.3 %成都: 0.3 %新乡: 0.3 %新乡: 0.3 %新加坡: 0.1 %新加坡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋中: 0.3 %晋中: 0.3 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %海口: 0.6 %海口: 0.6 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %舟山: 0.7 %舟山: 0.7 %芒廷维尤: 46.8 %芒廷维尤: 46.8 %苏州: 0.3 %苏州: 0.3 %苏黎世: 0.1 %苏黎世: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 17.3 %西宁: 17.3 %西安: 0.6 %西安: 0.6 %运城: 0.8 %运城: 0.8 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.3 %金华: 0.3 %长沙: 0.1 %长沙: 0.1 %青岛: 1.0 %青岛: 1.0 %其他其他ChinaRochesterSeattleTaiwan, China[]上海东京中山九龙城伊斯帕塔兰州北京南京南宁厦门台北台州吉林吉隆坡哥伦布大同天津威海宁波宣城平顶山广州廊坊张家口成都新乡新加坡昆明晋中杭州武汉沈阳济南海口深圳温州湖州湛江漯河烟台秦皇岛纽约舟山芒廷维尤苏州苏黎世衡水衡阳西宁西安运城邯郸郑州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (477) PDF downloads(46) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return