Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Zhao Na,He Xiaoxu,Jia Lei, et al. Identification of genes related to blind side hypermelanosis of Cynoglossus semilaevis based on skin transcriptome sequencing[J]. Haiyang Xuebao,2022, 44(2):57–66 doi: 10.12284/hyxb2022044
Citation: Zhao Na,He Xiaoxu,Jia Lei, et al. Identification of genes related to blind side hypermelanosis of Cynoglossus semilaevis based on skin transcriptome sequencing[J]. Haiyang Xuebao,2022, 44(2):57–66 doi: 10.12284/hyxb2022044

Identification of genes related to blind side hypermelanosis of Cynoglossus semilaevis based on skin transcriptome sequencing

doi: 10.12284/hyxb2022044
  • Received Date: 2021-08-19
  • Rev Recd Date: 2021-11-02
  • Available Online: 2021-12-06
  • Publish Date: 2022-02-01
  • Cynoglossus semilaevis as a representative species of Pleuronectiformes, is an important marine economic fish in Chinese coastal areas. The abnormal body color of C. semilaevis has been perplexing the practitioners for a long time. There are many reasons leading to abnormal body color, among which the genetic factors are thought to be the most fundamental reasons. The present researches on hypermelanosis of the blind side of C. semilaevis mainly focus on environment, nutrition, physiology, cloning of known pigmental genes and so on, while the digging of new funtional genes is still lacking. In this study, skin samples with different colors of C. semilaevis are selected for transcriptome sequencing. Through GO and KEGG functional enrichment and comparative analysis of different genes, differential expressed genes are screened in six melanogenesis-related KEGG pathways and the top ten genes are verified by qPCR. In this study, we find five functional genes with significant changes in the hypermelanotic skin on the blind side of C. semilaevis, which refer to txndc, alox15b, ptgs2, ptgis, and atp1a2a (p<0.05). The expression levels of txndc, alox15b, ptgs2, and ptgis genes in the melanization group are higher than those in the control group. In terms of function, three of these five genes are related to arachidonic acid (AA) to some extent. This provides theoretical support for the hypothesis that nutritional regulation related to unsaturated fatty acids may be involved in the molecular mechanism of abnormal body color in C. semilaevis.
  • loading
  • [1]
    Odiorne J M. Degeneration of Melanophores in fundulus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1933, 19(3): 329−332. doi: 10.1073/pnas.19.3.329
    [2]
    Odiorne J M. Morphological color changes in vertebrates[J]. Annals of the New York Academy of Sciences, 1948, 4: 288−308.
    [3]
    Sugimoto M. Morphological color changes in fish: regulation of pigment cell density and morphology[J]. Microscopy Research & Technique, 2002, 58(6): 496−503.
    [4]
    刘翠, 刘昊昆, 朱晓鸣, 等. 饲料中添加螺旋藻和叶黄素对杂交黄颡鱼生长、抗氧化能力和体色异常调控的比较研究[J]. 水生生物学报, 2021, 45(5): 1024−1033. doi: 10.7541/2021.2020.139

    Liu Cui, Liu Haokun, Zhu Xiaoming, et al. Comparative study on the regulation of growth, antioxidant capacity and abnormal body color of hybrid Pelteobagrus fulvidraco by adding Spirulina and lutein in feed[J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1024−1033. doi: 10.7541/2021.2020.139
    [5]
    Sugimoto M, Uchida N, Hatayama M. Apoptosis in skin pigment cells of the medaka, Oryzias latipes (Teleostei), during long-term chromatic adaptation: the role of sympathetic innervation[J]. Cell and Tissue Research, 2000, 301(2): 205−216. doi: 10.1007/s004410000226
    [6]
    Hamre K, Holen E, Moren M. Pigmentation and eye migration in Atlantic halibut (Hippoglossus hippoglossus L. ) larvae: new findings and hypotheses[J]. Aquaculture Nutrition, 2007, 13(1): 65−80. doi: 10.1111/j.1365-2095.2007.00467.x
    [7]
    Youngson A F, Webb J H. Thyroid hormone levels in Atlantic salmon (Salmo salar) during the return migration from the ocean to spawn[J]. Journal of Fish Biology, 1993, 42(2): 293−300. doi: 10.1111/j.1095-8649.1993.tb00329.x
    [8]
    Vissio P G, Darias M J, Di Yorio M P, et al. Fish skin pigmentation in aquaculture: the influence of rearing conditions and its neuroendocrine regulation[J]. General and Comparative Endocrinology, 2021, 301: 113662. doi: 10.1016/j.ygcen.2020.113662
    [9]
    曹小龙. 斑马鱼报警物质和色素模式对其行为影响的研究[D]. 上海: 上海海洋大学, 2019.

    Cao Xiaolong. Effects of alarm substances and pigment patterns on behavior of zebrafish (Danio rerio)[D]. Shanghai: Shanghai Ocean University, 2019.
    [10]
    邓成, 陈帅龙, 叶恒振, 等. 体色差异豹纹鳃棘鲈的色素及酶含量分析[J]. 生命科学研究, 2020, 24(1): 15−20.

    Deng Cheng, Chen Shuailong, Ye Hengzhen, et al. Analysis of pigment and enzyme levels of Plectropomus leopardus with body color difference[J]. Life Science Research, 2020, 24(1): 15−20.
    [11]
    于道德, 张少春, 宋静静, 等. 鱼类色素细胞及其生态学意义概述[J]. 广西科学院学报, 2020, 36(2): 117−123.

    Yu Daode, Zhang Shaochun, Song Jingjing, et al. Overview of fish pigment cells and the ecological significance[J]. Journal of Guangxi Academy of Sciences, 2020, 36(2): 117−123.
    [12]
    史学营, 徐永江, 武宁宁, 等. 半滑舌鳎(Cynoglossus semilaevis)体表色素细胞观察及POMC表达特性分析[J]. 渔业科学进展, 2015, 36(2): 45−54. doi: 10.11758/yykxjz.20150206

    Shi Xueying, Xu Yongjiang, Wu Ningning, et al. Preliminary studies on blind-side Hypermelanosis of Cynoglossus semilaevis: chromatophores observation and expression of proopiomelanocortin[J]. Progress in Fishery Sciences, 2015, 36(2): 45−54. doi: 10.11758/yykxjz.20150206
    [13]
    许细丹. 酪氨酸酶对瓯江彩鲤和斑马鱼黑斑体色影响的研究[D]. 上海: 上海海洋大学, 2020.

    Xu Xidan. Study on the effect of tyrosinase on black coloration in Oujiang color common carp and zebrafish[D]. Shanghai: Shanghai Ocean University, 2020.
    [14]
    许璟瑾, 张文娟, 王静怡, 等. 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178−1187.

    Xu Jingjin, Zhang Wenjuan, Wang Jingyi, et al. The active component screening of Anoectochilus roxburghii and the functional study on inhibition of melanogenesis in zebrafish[J]. Hereditas (Beijing), 2017, 39(12): 1178−1187.
    [15]
    刘力, 裴思然, 吴华丽, 等. 基于tyrp1a转基因斑马鱼构建色素障碍性疾病药物筛选模型[J]. 中国药科大学学报, 2016, 47(6): 740−743.

    Liu Li, Pei Siran, Wu Huali, et al. Drug screening model of treating pigmentation disorders in tyrp1a transgenic zebrafish[J]. Journal of China Pharmaceutical University, 2016, 47(6): 740−743.
    [16]
    Lamason R L, Mohideen M P K, Mest J R, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans[J]. Science, 2005, 310(5755): 1782−1786. doi: 10.1126/science.1116238
    [17]
    赵美娟, 户晶晶, 倪辉, 等. 黑色素生成信号通路研究进展[J]. 生物工程学报, 2019, 35(9): 1633−1642.

    Zhao Meijuan, Hu Jingjing, Ni Hui, et al. Research progress in melanogenesis signaling pathway[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1633−1642.
    [18]
    芮孝. 鲤、鲫复制Sox10基因的表达和功能分化研究[D]. 舟山: 浙江海洋大学, 2018.

    Rui Xiao. Expression and functional differentiation of duplicated Sox10 genes in common carp and crucian carp[D]. Zhoushan: Zhejiang Ocean University, 2018.
    [19]
    吴垚磊, 李仰真, 王娜, 等. 半滑舌鳎酪氨酸酶基因(TYR)和多巴色素异构酶基因(DCT)的克隆表达与分析[J]. 渔业科学进展, 2021, 42(6): 42−52.

    Wu Yaolei, Li Yangzhen, Wang Na, et al. Expression analysis of TYR and DCT genes related to body color in Cynoglossus semilaevis at different periods and in different tissues[J]. Progress in Fishery Sciences, 2021, 42(6): 42−52.
    [20]
    傅建军, 朱文彬, 罗文韬, 等. 不同体色鲤的生长、酪氨酸酶活性、黑色素含量及基因表达比较[J]. 中国水产科学, 2021, 28(8): 919−947.

    Fu Jianjun, Zhu Wenbin, Luo Wentao, et al. Comparison of growth, tyrosinase activity, melanin content, and gene expression between common carps with different pigmentations[J]. Journal of Fishery Sciences of China, 2021, 28(8): 919−947.
    [21]
    孟超, 徐皓, 黄超, 等. 鱼类体色相关功能基因的研究进展[J]. 湖南文理学院学报(自然科学版), 2020, 32(3): 30−35.

    Meng Chao, Xu Hao, Huang Chao, et al. Research progress on color-related genes of fish[J]. Journal of Hunan University of Arts and Science (Science and Technology), 2020, 32(3): 30−35.
    [22]
    Cal L, Suarez-Bregua P, Cerdá-Reverter J M, et al. Fish pigmentation and the melanocortin system[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 211: 26−33.
    [23]
    Shelbourne J E. Population effects on the survival, growth and pigment of tank-reared plaice larvae[M]//Harden Jones F R. Sea Fisheries Research. London: Elsk, 1974: 729−735.
    [24]
    Seikai T, Matsumoto J. Mechanism of Pseudoalbinism in flatfish: an association between pigment cell and skin differentiation[J]. Journal of the World Aquaculture Society, 1994, 25(1): 78−85.
    [25]
    Tabata K. Application of the chromosomal manipulation in aquaculture of hirame Paralichthys olivaceus[J]. Bulletin of Hyogo Prefectural Fisheries Experimental Station, 1991, 28: 1−134.
    [26]
    Nakamura K, Iida H, Nakano H. Riboflavin in the skin of Albinic flatfish Liopsetta obscura[J]. Nippon Suisan Gakkaishi, 1986, 52(12): 2207. doi: 10.2331/suisan.52.2207
    [27]
    Kanazawa A. Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish[J]. Journal of the World Aquaculture Society, 1993, 24(2): 162−166. doi: 10.1111/j.1749-7345.1993.tb00005.x
    [28]
    Devresse B, Léger P, Sorgeloos P, et al. Improvement of flat fish pigmentation through the use of DHA-enriched rotifers and Artemia[J]. Aquaculture, 1994, 124(1/4): 287−288.
    [29]
    Shao Changwei, Bao Baolong, Xie Zhiyuan, et al. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry[J]. Nature Genetics, 2017, 49(1): 119−124. doi: 10.1038/ng.3732
    [30]
    Paterson E K, Ho H, Kapadia R, et al. 9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis[J]. Experimental Dermatology, 2013, 22(3): 202−209. doi: 10.1111/exd.12099
    [31]
    Takahashi A, Kosugi T, Kobayashi Y, et al. The melanin-concentrating hormone receptor 2 (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder[J]. General and Comparative Endocrinology, 2007, 151(2): 210−219.
    [32]
    朱学武, 徐永江, 柳学周, 等. 池塘养殖牙鲆(Paralichthys olivaceus)无眼侧体色黑化消褪机理[J]. 渔业科学进展, 2017, 38(1): 103−110.

    Zhu Xuewu, Xu Yongjiang, Liu Xuezhou, et al. Physiological mechanisms for degeneration of blind-side Hypermelanosis in pond-cultured Japanese flounder (Paralichthys olivaceus)[J]. Progress in Fishery Sciences, 2017, 38(1): 103−110.
    [33]
    Koga A, Inagaki H, Bessho Y, et al. Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes[J]. Molecular and General Genetics MGG, 1995, 249: 400−405. doi: 10.1007/BF00287101
    [34]
    Boonanuntanasarn S, Yoshizaki G, Iwai K, et al. Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout[J]. Pigment Cell Research, 2004, 17(4): 413−421. doi: 10.1111/j.1600-0749.2004.00166.x
    [35]
    Zhang X T, Weik J, Chen, Y Y, et al. Molecular cloning and expression analysis of tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco[J]. Journal of Fish Biology, 2018, 92: 979−998. doi: 10.1111/jfb.13556
    [36]
    史学营, 柳学周, 石莹, 等. 半滑舌鳎 (Cynoglossus semilaevis)黑色素聚集素受体 (MCHR)表达特性及其与无眼侧黑化的关系[J]. 渔业科学进展, 2017, 38(1): 91−102.

    Shi Xueying, Liu Xuezhou, Shi Ying, et al. Molecular characterization of MCHR and its corelation with blind-side Hypermelanosis in Cynoglossus semilaevis[J]. Progress in Fishery Sciences, 2017, 38(1): 91−102.
    [37]
    邱超达. SWS1介导的紫光/紫外光对斑马鱼皮肤黑色素细胞形成的影响[D]. 上海: 上海海洋大学, 2020.

    Qiu Chaoda. The influence of SWS1 mediated violet/ultra violet on the formation of cutaneous melanocyte cells in zebrafish[D]. Shanghai: Shanghai Ocean University, 2020.
    [38]
    Li Kunming, Zhao Na, Zhang Bo, et al. Identification and characterization of the melanocortin 1 receptor gene (MC1R) in hypermelanistic Chinese tongue sole (Cynoglossus semilaevis)[J]. Fish Physiology and Biochemistry, 2020, 46(3): 881−890. doi: 10.1007/s10695-019-00758-8
    [39]
    Li Yangzhen, Hu Yuanri, Zheng Weiwei, et al. Insights into the heritable variation of hypermelanosis in Chinese tongue sole (Cynoglossus halflaevis): potential for future selective breeding[J]. Aquaculture, 2021, 539: 736617. doi: 10.1016/j.aquaculture.2021.736617
    [40]
    朱学武, 徐永江, 柳学周, 等. 半滑舌鳎黑色素聚集激素重组制备与生物活性分析[J]. 水产学报, 2016, 40(10): 1595−1605.

    Zhu Xuewu, Xu Yongjiang, Liu Xuezhou, et al. In vitro expression and bioactivity analysis of melanin concentration hormone from Cynoglossus semilaevis[J]. Journal of Fisheries of China, 2016, 40(10): 1595−1605.
    [41]
    史学营. 养殖半滑舌鳎无眼侧黑化机制的初步研究[D]. 上海: 上海海洋大学, 2015.

    Shi Xueying. Preliminary investigation on mechanism for blind-side hyermelanosis of farmed tongue sole[D]. Shanghai: Shanghai Ocean University, 2015.
    [42]
    马学坤, 柳学周, 温海深, 等. 半滑舌鳎早期发育过程中体表色素变化的研究[J]. 海洋水产研究, 2006, 27(2): 62−68.

    Ma Xuekun, Liu Xuezhou, Wen Haishen, et al. Changes of melanophores in the larval skin of Cynoglossus semilaevis Günther[J]. Marine Fisheries Research, 2006, 27(2): 62−68.
    [43]
    朱学武. 养殖鲆鲽类无眼侧黑化调控机制研究[D]. 上海: 上海海洋大学, 2016.

    Zhu Xuewu. Studies on regulation mechanisms underline blind-side hypermelanosis of farmed flatfish[D]. Shanghai: Shanghai Ocean University, 2016.
    [44]
    Zhang Lin, Hou Yanhong, Li Nan, et al. The influence of TXNDC5 gene on gastric cancer cell[J]. Journal of Cancer Research and Clinical Oncology, 2010, 136(10): 1497−1505. doi: 10.1007/s00432-010-0807-x
    [45]
    Vincent E E, Elder D J E, Phillips L, et al. Overexpression of the TXNDC5 protein in non-small cell lung carcinoma[J]. Anticancer Research, 2011, 31(5): 1577−1582.
    [46]
    Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15)[J]. Gene, 2015, 573(1): 1−32. doi: 10.1016/j.gene.2015.07.073
    [47]
    Kutzner L, Goloshchapova K, Heydeck D, et al. Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2017, 1862(7): 666−675.
    [48]
    Sirois J, Sayasith K, Brown K A, et al. Cyclooxygenase-2 and its role in ovulation: a 2004 account[J]. Human Reproduction Update, 2004, 10(5): 373−385. doi: 10.1093/humupd/dmh032
    [49]
    Shrestha K, Lukasik K, Baufeld A, et al. Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2[J]. Reproduction, 2015, 149(1): 21−29. doi: 10.1530/REP-14-0337
    [50]
    Lim H, Gupta R A, Ma Wenge, et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ[J]. Genes & Development, 1999, 13(12): 1561−1574.
    [51]
    Nakayama T, Soma M, Izumi Y, et al. Organization of the human prostacyclin synthase gene[J]. Biochemical and Biophysical Research Communications, 1996, 221(3): 803−806. doi: 10.1006/bbrc.1996.0677
    [52]
    曾小芳. PTGIS基因突变对肺血管内皮细胞功能的影响[D]. 重庆: 重庆医科大学, 2018.

    Zeng Xiaofang. Effect of PTGIS gene mutation on the function of pulmonary vascular endothelial cells[D]. Chongqing: Chongqing Medical University, 2018.
    [53]
    De Fusco M, Marconi R, Silvestri L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2[J]. Nature Genetics, 2003, 33(2): 192−196. doi: 10.1038/ng1081
    [54]
    Bruce M, Oyen F, Bell G, et al. Development of broodstock diets for the European Sea Bass (Dicentrarchus labrax) with special emphasis on the importance of n-3 and n-6 highly unsaturated fatty acid to reproductive performance[J]. Aquaculture, 1999, 177(1/4): 85−97.
    [55]
    Sargent J, McEvoy L, Estevez A, et al. Lipid nutrition of marine fish during early development: current status and future directions[J]. Aquaculture, 1999, 179(1/4): 217−229.
    [56]
    Van Anholt R D, Koven W M, Lutzky S, et al. Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata) larvae[J]. Aquaculture, 2004, 238(1/4): 369−383.
    [57]
    Estévez A, McEvoy L A, Bell J G, et al. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in Arachidonic and Eicosapentaenoic acids[J]. Aquaculture, 1999, 180(3/4): 321−343.
    [58]
    McEvoy L A, Estévez A, Bell J G, et al. Influence of dietary levels of eicosapentaenoic and arachidonic acids on the pigmentation success of turbot (Scophthalmus maximus L. ) and halibut (Hippoglossus hippoglossus L. )[J]. Bulletin of the Aquaculture Association of Canada, 1999(98-4): 17−20.
    [59]
    Copeman L A, Parrish C C, Brown J A, et al. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment[J]. Aquaculture, 2002, 210(1/4): 285−304.
    [60]
    Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae[J]. Aquaculture, 2003, 227(1/4): 211−220.
    [61]
    Willey S, Bengtson D A, Harel M. Arachidonic acid requirements in larval summer flounder, Paralichthys dentatus[J]. Aquaculture International, 2003, 11(1): 131−149.
    [62]
    Villalta M, Estévez A, Bransden M P, et al. Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)[J]. Aquaculture Nutrition, 2008, 14(2): 120−128. doi: 10.1111/j.1365-2095.2007.00511.x
    [63]
    Lund I, Steenfeldt S J, C B W. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole (Solea solea L. )[J]. Aquaculture, 2007, 273(4): 532−544. doi: 10.1016/j.aquaculture.2007.10.047
    [64]
    Boglino A, Wishkerman A, Darias M J, et al. The effects of dietary arachidonic acid on Senegalese sole morphogenesis: a synthesis of recent findings[J]. Aquaculture. 2014, 432: 443-452.
    [65]
    Ando H, Watabe H, Valencia J C, et al. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function[J]. Journal of Biological Chemistry, 2004, 279(15): 15427−15433. doi: 10.1074/jbc.M313701200
    [66]
    Estevez A, Kaneko T, Seikai T, et al. Ontogeny of ACTH and MSH cells in Japanese flounder (Paralichthys olivaceus) in relation to albinism[J]. Aquaculture, 2001, 202(1/2): 131−143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (334) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return