Citation: | Dong Ziyi,Du Zhenhong,Wu Sensen, et al. An automatic marine mesoscale eddy detection model based on improved U-Net network[J]. Haiyang Xuebao,2022, 44(2):123–131 doi: 10.12284/hyxb2022038 |
[1] |
Ikeda M, Mysak L A, Emery W J. Observation and modeling of satellite-sensed meanders and eddies off vancouver island[J]. Journal of Physical Oceanography, 1984, 14(1): 3−21. doi: 10.1175/1520-0485(1984)014<0003:OAMOSS>2.0.CO;2
|
[2] |
Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
|
[3] |
Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6054): 328−332. doi: 10.1126/science.1208897
|
[4] |
杜艳玲. 基于海洋遥感影像的中尺度涡自动识别及与渔场动态关系研究[D]. 上海: 上海海洋大学, 2017.
Du Yanling. Automatic recognition of mesoscale eddy and dynamic relation with fishing ground based on ocean remote sensing images[D]. Shanghai: Shanghai Ocean University, 2017.
|
[5] |
Faghmous J H, Le M, Uluyol M, et al. A parameter-free spatio-temporal pattern mining model to catalog global ocean dynamics[C]// 2013 IEEE 13th International Conference on Data Mining. Dallas, USA: IEEE, 2013.
|
[6] |
Kersalé M, Doglioli A M, Petrenko A A. Sensitivity study of the generation of mesoscale eddies in a numerical model of Hawaii islands[J]. Ocean Science, 2011, 7(3): 277−291. doi: 10.5194/os-7-277-2011
|
[7] |
Chen Yushi, Lin Zhouhan, Zhao Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094−2107. doi: 10.1109/JSTARS.2014.2329330
|
[8] |
Lguensat R, Sun M, Fablet R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018.
|
[9] |
Franz K, Roscher R, Milioto A, et al. Ocean eddy identification and tracking using neural networks[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018.
|
[10] |
Xu Guangjun, Cheng Cheng, Yang Wenxian, et al. Oceanic eddy identification using an AI Scheme[J]. Remote Sensing, 2019, 11(11): 1349. doi: 10.3390/rs11111349
|
[11] |
芦旭熠, 单桂华, 李观. 基于深度学习的海洋中尺度涡识别与可视化[J]. 计算机系统应用, 2020, 29(4): 65−75.
Lu Xuyi, Shan Guihua, Li Guan. Oceanic mesoscale eddy detection and visualization based on deep learning[J]. Computer Systems & Applications, 2020, 29(4): 65−75.
|
[12] |
Woo S, Park J, Lee J, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Munich, Germany: ECCV, 2018 .
|
[13] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 770−778.
|
[14] |
何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010−2022. doi: 10.12082/dqxxkx.2020.190622
He Hongshu, Huang Xiaoxia, Li Hongga, et al. Water body extraction of high resolution remote sensing image based on improved U-Net network[J]. Journal of Geo-Information Science, 2020, 22(10): 2010−2022. doi: 10.12082/dqxxkx.2020.190622
|
[15] |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[M]//Fleet D, Pajdla T, Schiele B, et al. Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014.
|
[16] |
李其. 基于深度特征的SAR图像舰船目标检测方法研究[D]. 成都: 电子科技大学, 2020.
Li Qi. Research on ship detection in SAR images based on depth feature[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
[17] |
Mason E, Pascual A, McWilliams J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1181−1188. doi: 10.1175/JTECH-D-14-00019.1
|
[18] |
侯向丹, 赵一浩, 刘洪普, 等. 融合残差注意力机制的U-Net视盘分割[J]. 中国图象图形学报, 2020, 25(9): 1915−1929.
Hou Xiangdan, Zhao Yihao, Liu Hongpu, et al. Optic disk segmentation by combining U-Net and residual attention mechanism[J]. Journal of Image and Graphics, 2020, 25(9): 1915−1929.
|
[19] |
杨彬. 基于深度学习的高分辨率遥感影像变化检测[D]. 徐州: 中国矿业大学, 2019.
Yang Bin. Change detection of high resolution remote sensing image based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[20] |
张盟, 杨玉婷, 孙鑫, 等. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 2020, 52(5): 708−713.
Zhang Meng, Yang Yuting, Sun Xin, et al. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(5): 708−713.
|
[21] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
|
[22] |
黎安舟. 南海中尺度特征遥感提取与时空分布研究[D]. 上海: 上海海洋大学, 2018.
Li Anzhou. Extraction of mesoscale features based on remote sensing and spatio-temporal distribution of lighting fishing boat in South China Sea[D]. Shanghai: Shanghai Ocean University, 2018.
|