Citation: | Wang Xin,Bei Yixuan,Chen Zhuo, et al. Retrieving shallow bathymetry by integrating spatial autocorrelation features with machine learning[J]. Haiyang Xuebao,2022, 44(11):159–169 doi: 10.12284/hyxb2022033 |
[1] |
刘经南, 赵建虎. 多波束测深系统的现状和发展趋势[J]. 海洋测绘, 2002, 22(5): 3−6. doi: 10.3969/j.issn.1671-3044.2002.05.001
Liu Jingnan, Zhao Jianhu. Status and development tendency of multi-beam bathymetric system[J]. Hydrographic Surveying and Charting, 2002, 22(5): 3−6. doi: 10.3969/j.issn.1671-3044.2002.05.001
|
[2] |
赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10): 1786−1794. doi: 10.11947/j.AGCS.2017.20170276
Zhao Jianhu, Ouyang Yongzhong, Wang Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786−1794. doi: 10.11947/j.AGCS.2017.20170276
|
[3] |
Richard Z, Daniel I, David R, et al. Habitat classification of temperate marine macroalgal communities using bathymetric LiDAR[J]. Remote Sensing, 2014, 6(3): 2154−2175. doi: 10.3390/rs6032154
|
[4] |
杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509−1516. doi: 10.11947/j.AGCS.2017.20170351
Yang Bisheng, Liang Fuxun, Huang Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509−1516. doi: 10.11947/j.AGCS.2017.20170351
|
[5] |
蒋兴伟, 林明森, 张有广, 等. 海洋遥感卫星及应用发展历程与趋势展望[J]. 卫星应用, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005
Jiang Xingwei, Lin Mingsen, Zhang Youguang, et al. Development and prospect of ocean remote sensing satellite and its application[J]. Satellite Application, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005
|
[6] |
Hodul M, Bird S, Knudby A, et al. Satellite derived photogrammetric bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142(8): 268−277.
|
[7] |
Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978, 17(3): 379−383. doi: 10.1364/AO.17.000379
|
[8] |
马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 5−25. doi: 10.3969/j.issn.1671-6647.2018.03.001
Ma Yi, Zhang Jie, Zhang jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 5−25. doi: 10.3969/j.issn.1671-6647.2018.03.001
|
[9] |
Lyzenga D R, Malinas N P, Tanis F J. Multispectral bathymetry using a simple physically based algorithm[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(8): 2251−2259.
|
[10] |
陈启东, 邓孺孺, 秦雁, 等. 广东飞来峡库区水深遥感[J]. 中山大学学报(自然科学版), 2012, 51(1): 122−127.
Chen Qidong, Deng Ruru, Qin Yan, et al. Water depth extraction from remote sensing image in Feilaixia Reservoir[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(1): 122−127.
|
[11] |
Figueiredo I N, Pinto L, Gonalves G. A modified Lyzenga’s model for multispectral bathymetry using Tikhonov regularization[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(1): 53−57.
|
[12] |
Stumpf R P, Holderied K, Sinclair M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography, 2003, 48(1/2): 547−556.
|
[13] |
Liang Jian, Zhang Jie, Ma Yi. A spatial resolution effect analysis of remote sensing bathymetry[J]. Acta Oceanologica Sinica, 2017, 36(7): 102−109. doi: 10.1007/s13131-017-1088-x
|
[14] |
陈本清, 杨燕明, 罗凯. 基于高分一号卫星多光谱数据的岛礁周边浅海水深遥感反演[J]. 热带海洋学报, 2017, 36(2): 70−78.
Chen Benqing, Yang Yanming, Luo Kai. Retrieval of island shallow water depth from the GaoFen-1 multi-spectral imagery[J]. Journal of Tropical Oceanography, 2017, 36(2): 70−78.
|
[15] |
陈琛, 马毅, 张靖宇. GF-1 WFV图像经验模分解的光谱保真性与水深遥感探测[J]. 海洋学报, 2018, 40(4): 51−60.
Chen Chen, Ma Yi, Zhang Jingyu. Spectral fidelity and water depth remote sensing detection of EMD of GF-1 WFV images[J]. Haiyang Xuebao, 2018, 40(4): 51−60.
|
[16] |
Xia H, Li X, Zhang H, et al. A Bathymetry mapping approach combining log-ratio and semianalytical models using four-band multispectral imagery without ground data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2695−2709. doi: 10.1109/TGRS.2019.2953381
|
[17] |
王燕红, 陈义兰, 周兴华, 等. 基于多项式回归模型的岛礁遥感浅海水深反演[J]. 海洋学报, 2018, 40(3): 121−128.
Wang Yanhong, Chen Yilan, Zhou Xinghua, et al. Research on reef bathymetry using remote sensing based on polynomial regression model[J]. Haiyang Xuebao, 2018, 40(3): 121−128.
|
[18] |
Wang Yanjiao, Zhang Peiqun, Dong Wenjie, et al. Study on remote sensing of water depths based on BP artificial neural network[J]. Marine Science Bulletin, 2007, 9(1): 26−35.
|
[19] |
王锦锦, 马毅, 张靖宇. 基于模糊隶属度的多核SVR遥感水深融合探测[J]. 海洋环境科学, 2018, 37(1): 130−136. doi: 10.13634/j.cnki.mes.2018.01.020
Wang Jinjin, Ma Yi, Zhang Jingyu. Multiple kernel support vector regression based on fuzzy membership for remote sensing water depth fusion detection[J]. Marine Environmental Science, 2018, 37(1): 130−136. doi: 10.13634/j.cnki.mes.2018.01.020
|
[20] |
朱金山, 纪轩禹, 宋珍珍. 基于支持向量机和BP神经网络的水深反演研究[J]. 测绘与空间地理信息, 2019, 42(6): 11−14. doi: 10.3969/j.issn.1672-5867.2019.06.004
Zhu Jinshan, Ji Xuanyu, Song Zhenzhen. Water depth inversion based on support vector machine and BP neural network[J]. Geomatics & Spatial Information Technology, 2019, 42(6): 11−14. doi: 10.3969/j.issn.1672-5867.2019.06.004
|
[21] |
温开祥, 李勇, 王华, 等. 基于遥感和机器学习的内陆水体水深反演技术[J]. 热带地理, 2020, 40(2): 314−322. doi: 10.13284/j.cnki.rddl.003237
Wen Kaixiang, Li Yong, Wang Hua, et al. Estimating inland water depth based on remote sensing and machine learning technique[J]. Tropical Geography, 2020, 40(2): 314−322. doi: 10.13284/j.cnki.rddl.003237
|
[22] |
刘光孟, 汪云甲, 张海荣, 等. 空间分析中几种插值方法的比较研究[J]. 地理信息世界, 2011, 9(3): 41−45. doi: 10.3969/j.issn.1672-1586.2011.03.008
Liu Guangmeng, Wang Yunjia, Zhang Hairong, et al. Comparative study of several lnterpolation methods on spatial analysis[J]. Geomatics World, 2011, 9(3): 41−45. doi: 10.3969/j.issn.1672-1586.2011.03.008
|
[23] |
印兴耀, 刘永社. 储层建模中地质统计学整合地震数据的方法及研究进展[J]. 石油地球物理勘探, 2002, 37(4): 423−430. doi: 10.3321/j.issn:1000-7210.2002.04.020
Yin Xingyao, Liu Yongshe. Methods and development of integrating seismic data in reservoir model-building[J]. Oil Geophysical Prospecting, 2002, 37(4): 423−430. doi: 10.3321/j.issn:1000-7210.2002.04.020
|
[24] |
何红艳, 郭志华, 肖文发. 降水空间插值技术的研究进展[J]. 生态学杂志, 2005, 10(15): 1187−1191. doi: 10.3321/j.issn:1000-4890.2005.10.016
He Hongyan, Guo Zhihua, Xiao Wenfa. Review on spatial interpolation techniques of rainfall[J]. Chinese Journal of Ecology, 2005, 10(15): 1187−1191. doi: 10.3321/j.issn:1000-4890.2005.10.016
|
[25] |
Su H, Liu H, Wu Q. Prediction of water depth from multispectral satellite imagery-the regression Kriging alternative[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(12): 2511−2515.
|
[26] |
Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity spatial[J]. Geographical Analysis, 2010, 28(4): 281−298. doi: 10.1111/j.1538-4632.1996.tb00936.x
|
[27] |
Zhang K, Wang X, Wu Z, et al. Improving statistical uncertainty estimate of satellite-derived bathymetry by accounting for depth-dependent uncertainty[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, PP(99): 1−9.
|
[28] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[29] |
Ham J, Chen Y, Crawford M M, et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(3): 492−501.
|
[30] |
Stumpf A, Kerle N. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10): 2564−2577. doi: 10.1016/j.rse.2011.05.013
|
[31] |
邱耀炜, 沈蔚, 纪茜. 随机森林模型在遥感水深反演中的应用[J]. 海洋技术学报, 2019, 38(5): 98−103.
Qiu Yaowei, Shen Wei, Ji Qian. Satellite-derived bathymetry using random forest model[J]. Journal of Ocean Technology, 2019, 38(5): 98−103.
|
[32] |
朱钟正, 苏伟. 基于局部空间统计分析的SPOT 5影像分类[J]. 遥感学报, 2011, 15(5): 957−972. doi: 10.11834/jrs.2011162
Zhu Zhongzheng, Su Wei. The analysis of the classification of SPOT 5 image based on local spatial statistics[J]. National Remote Sensing Bulletin, 2011, 15(5): 957−972. doi: 10.11834/jrs.2011162
|
[33] |
张涛, 方宏, 韦玉春, 等. 顾及空间自相关性的高分遥感影像中建设用地的变化检测[J]. 自然资源学报, 2020, 35(4): 212−225.
Zhang Tao, Fang Hong, Wei Yuchun, et al. Detection of the construction land change in fine spatial resolution remote sensing imagery coupling spatial autocorrelation[J]. Journal of Natural Resources, 2020, 35(4): 212−225.
|
[34] |
Behrens T, Schmidt K, Viscarra R, et al. Spatial modelling with Euclidean distance fields and machine learning[J]. European Journal of Soil Science, 2018, 69(5): 757−770. doi: 10.1111/ejss.12687
|
[35] |
Anselin L. Local indicator of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2): 93−115.
|
[36] |
张松林, 张昆. 全局空间自相关Moran指数和G系数对比研究[J]. 中山大学学报(自然科学版), 2007, 46(4): 93−97. doi: 10.3321/j.issn:0529-6579.2007.04.021
Zhang Songlin, Zhang Kun. Comparison between general Moran’s index and Getis-Ord general G of spatial autocorrelation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(4): 93−97. doi: 10.3321/j.issn:0529-6579.2007.04.021
|
[37] |
Carr J R, De Miranda F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J]. IEEE Transactions on Geoscience & Remote Sensing, 1998, 36(6): 1945−1952.
|
[38] |
Hedley J D, Harborne A R, Mumby P J. Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos[J]. International Journal of Remote Sensing, 2005, 26(10): 2107−2112. doi: 10.1080/01431160500034086
|