Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Ke Li’na,Zhai Yuning,Fan Jianchao. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao,2022, 44(2):132–142 doi: 10.12284/hyxb2022026
Citation: Ke Li’na,Zhai Yuning,Fan Jianchao. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao,2022, 44(2):132–142 doi: 10.12284/hyxb2022026

Marine cage aquaculture information extraction based on deep edge spectral U-Net

doi: 10.12284/hyxb2022026
  • Received Date: 2021-06-05
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-10-25
  • Publish Date: 2022-02-01
  • Cage aquaculture is one of the most important types of mariculture. The spectral characteristics of offshore cage aquaculture are greatly affected by the coastal vegetation and water body, so it is easy to cause noise problems. The new type of deep-sea cage aquaculture target is far from the shore, but the sea surface frame part of the aquaculture target is small, which has high spectral similarity with the natural water, and is difficult to extract. In this paper, deep edge spectral U-Net (DES-Unet) model is proposed to extract aquaculture information of two types of cage aquaculture. In this model, Canny operator bilateral filtering algorithm is used to remove the redundant spectral information after band operation, and the edge spectral features are extracted. The U-Net jump connection structure is used to fuse the edge spectral features with the deep convolution network features, and the pixel by pixel classification of softmax is used to extract the cage aquaculture information. Taking the offshore cage aquaculture and deep-sea cage aquaculture in Hainan Island as the research objects, the aquaculture information is extracted. The experimental results show that the accuracy of the proposed method is 97.35% on the offshore cage target and 98.99% on the deep-sea cage target. The result is better than the classical unsupervised algorithms and traditional deep learning model.
  • loading
  • [1]
    Yucel-Gier G, Eronat C, Sayin E. The impact of marine aquaculture on the environment; the importance of site selection and carrying capacity[J]. Agricultural Sciences, 2019, 10(3): 259−266. doi: 10.4236/as.2019.103022
    [2]
    王学哲, 闫吉顺, 王鹏, 等. 辽宁省围海养殖的用海效益和退出机制[J]. 海洋开发与管理, 2019, 36(4): 17−19. doi: 10.3969/j.issn.1005-9857.2019.04.004

    Wang Xuezhe, Yan Jishun, Wang Peng, et al. The benefit and withdrawal mechanism for sea reclamation aquaculture in Liaoning Province[J]. Ocean Development and Management, 2019, 36(4): 17−19. doi: 10.3969/j.issn.1005-9857.2019.04.004
    [3]
    包樱钰, 李菲菲, 温东辉. 我国海水养殖业的抗生素污染现状[J]. 海洋环境科学, 2021, 40(2): 294−302. doi: 10.12111/j.mes.20190312

    Bao Yingyu, Li Feifei, Wen Donghui. Antibiotic contamination in mariculture in China[J]. Marine Environmental Science, 2021, 40(2): 294−302. doi: 10.12111/j.mes.20190312
    [4]
    彭广海, 付婧, 马增岭, 等. 基于3种生物指数的三沙湾养殖活动底栖环境效应研究[J]. 海洋学报, 2018, 40(4): 106−118.

    Peng Guanghai, Fu Jing, Ma Zengling, et al. Effects of mariculture activities on benthic environment based on analysis of three biotic indices in Sansha Bay[J]. Haiyang Xuebao, 2018, 40(4): 106−118.
    [5]
    王宗灵, 傅明珠, 周健, 等. 黄海浒苔绿潮防灾减灾现状与早期防控展望[J]. 海洋学报, 2020, 42(8): 1−11.

    Wang Zongling, Fu Mingzhu, Zhou Jian, et al. Current situation of prevention and mitigation of the Yellow Sea green tide and proposing control measurements in the early stage[J]. Haiyang Xuebao, 2020, 42(8): 1−11.
    [6]
    王志华, 杨晓梅, 苏奋振, 等. 我国海岸带海岛礁遥感研究进展及建议[J]. 中国工程科学, 2019, 21(6): 59−63.

    Wang Zhihua, Yang Xiaomei, Su Fenzhen, et al. Remote sensing application in China’s coastal zones and islands: recent progress and some suggestions[J]. Strategic Study of CAE, 2019, 21(6): 59−63.
    [7]
    徐京萍, 赵建华, 张丰收, 等. 面向对象的池塘养殖用海信息提取[J]. 国土资源遥感, 2013, 25(1): 82−85.

    Xu Jingping, Zhao Jianhua, Zhang Fengshou, et al. Object-oriented information extraction of pond aquaculture[J]. Remote Sensing for Land and Resources, 2013, 25(1): 82−85.
    [8]
    李海涛, 王腾, 王印庚. 基于VGG-16卷积神经网络的海水养殖病害诊断[J]. 计算机系统应用, 2020, 29(7): 222−227.

    Li Haitao, Wang Teng, Wang Yingeng. Diagnosis of marine aquaculture diseases based on VGG-16 convolutional neural network[J]. Computer Systems & Applications, 2020, 29(7): 222−227.
    [9]
    杨英宝, 江南, 殷立琼, 等. 东太湖湖泊面积及网围养殖动态变化的遥感监测[J]. 湖泊科学, 2005, 17(2): 133−138. doi: 10.3321/j.issn:1003-5427.2005.02.007

    Yang Yingbao, Jiang Nan, Yin Liqiong, et al. RS-based dynamic monitoring of lake area and enclosure culture in East Taihu Lake[J]. Journal of Lake Science, 2005, 17(2): 133−138. doi: 10.3321/j.issn:1003-5427.2005.02.007
    [10]
    Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar convention on wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
    [11]
    Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679−698. doi: 10.1109/TPAMI.1986.4767851
    [12]
    Ostu N. A threshold selection method from gray level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
    [13]
    Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772−776. doi: 10.1109/LGRS.2009.2025059
    [14]
    卢业伟, 李强子, 杜鑫, 等. 基于高分辨率影像的近海养殖区的一种自动提取方法[J]. 遥感技术与应用, 2015, 30(3): 486−494.

    Lu Yewei, Li Qiangzi, Du Xin, et al. A method of coastal aquaculture area automatic extraction with high spatial resolution images[J]. Remote Sensing Technology and Application, 2015, 30(3): 486−494.
    [15]
    Kang Junmei, Sui Lichun, Yang Xiaomei, et al. Sea surface-visible aquaculture spatial-temporal distribution remote sensing: a case study in Liaoning Province, China from 2000 to 2018[J]. Sustainability, 2019, 11(24): 7186. doi: 10.3390/su11247186
    [16]
    Wang Zhihua, Yang Xiaomei, Liu Yueming, et al. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery[J]. Remote Sensing Letters, 2018, 9(9): 839−846. doi: 10.1080/2150704X.2018.1468103
    [17]
    程博, 刘岳明, 刘旭楠, 等. 基于多源特征融合的高分辨率遥感图像近海养殖区提取方法研究[J]. 遥感技术与应用, 2018, 33(2): 296−304.

    Cheng Bo, Liu Yueming, Liu Xu’nan, et al. Research on extraction method of coastal aquaculture areas on high resolution remote sensing image based on multi-features fusion[J]. Remote Sensing Technology and Application, 2018, 33(2): 296−304.
    [18]
    Shen Yu, Zhu Sijie, Chen Chen, et al. Efficient deep learning of nonlocal features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6029−6043. doi: 10.1109/TGRS.2020.3014286
    [19]
    Cheng Bo, Liang Chenbin, Liu Xunan, et al. Research on a novel extraction method using deep learning based on GF-2 images for aquaculture areas[J]. International Journal of Remote Sensing, 2020, 41(9): 3575−3591. doi: 10.1080/01431161.2019.1706009
    [20]
    Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [21]
    Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer International Publishing, 2015, 9351: 234−241.
    [22]
    郑智腾, 范海生, 王洁, 等. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120−129.

    Zheng Zhiteng, Fan Haisheng, Wang Jie, et al. An improved double-branch network method for intelligently extracting marine cage culture area[J]. Remote Sensing for Land and Resources, 2020, 32(4): 120−129.
    [23]
    刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.

    Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
    [24]
    Cui Binge, Fei Dong, Shao Guanghui, et al. Extracting raft aquaculture areas from remote sensing images via an improved U-net with a PSE structure[J]. Remote Sensing, 2019, 11(17): 2053. doi: 10.3390/rs11172053
    [25]
    Liu Chenxi, Jiang Tao, Zhang Zhen, et al. Extraction method of offshore mariculture area under weak signal based on multisource feature fusion[J]. Journal of Marine Science and Engineering, 2020, 8(2): 99. doi: 10.3390/jmse8020099
    [26]
    Plaut D C, Nowlan S J, Hinton G E. Experiments on learning by back propagation[R]. Pittsburgh: Carnegie-Mellon University, 1986: 54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views (451) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return