Citation: | Dong Fan,Zhang Xiaoying,Chen Guangquan, et al. Seawater intrusion characterization and dynamics prediction based on WA-NARX hybrid model in the south of Laizhou Bay[J]. Haiyang Xuebao,2022, 44(3):81–97 doi: 10.12284/hyxb2022015 |
[1] |
吴吉春, 吴永祥, 林锦, 等. 黄渤海沿海地区地下水管理与海水入侵防治研究[J]. 中国环境管理, 2018, 10(2): 91−92. doi: 10.3969/j.issn.1674-6252.2018.02.017
Wu Jichun, Wu Yongxiang, Lin Jin, et al. Study on the groundwater management and seawater intrusion prevention in the coastal areas of the Bohai Sea and the Yellow Sea[J]. Chinese Journal of Environmental Management, 2018, 10(2): 91−92. doi: 10.3969/j.issn.1674-6252.2018.02.017
|
[2] |
高茂生, 骆永明. 我国重点海岸带地下水资源问题与海水入侵防控[J]. 中国科学院院刊, 2016, 31(10): 1197−1203.
Gao Maosheng, Luo Yongming. Change of groundwater resource and prevention and control of seawater intrusion in coastal zone[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1197−1203.
|
[3] |
Zhang Xiaoying, Qi Linlin, Li Wenming, et al. Bacterial community variations with salinity in the saltwater-intruded estuarine aquifer[J]. Science of the Total Environment, 2021, 755: 142423. doi: 10.1016/j.scitotenv.2020.142423
|
[4] |
Zhang Xiaoying, Hu B X, Wang Peng, et al. Hydrogeochemical evolution and heavy metal contamination in groundwater of a reclaimed land on Zhoushan Island[J]. Water, 2018, 10(3): 316: 1−22. doi: 10.3390/w10030316
|
[5] |
孙娜, 周建中, 朱双, 等. 基于小波分析的两种神经网络耦合模型在月径流预测中的应用[J]. 水电能源科学, 2018, 36(4): 14−17, 32.
Sun Na, Zhou Jianzhong, Zhu Shuang, et al. Application of hybrid models based on wavelet analysis and two different neural networks in prediction of monthly runoff[J]. Water Resources and Power, 2018, 36(4): 14−17, 32.
|
[6] |
Shoaib M, Shamseldin A Y, Melville B W, et al. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction[J]. Journal of Hydrology, 2016, 535: 211−225. doi: 10.1016/j.jhydrol.2016.01.076
|
[7] |
Guzman S M, Paz J O, Tagert M L M. The use of NARX neural networks to forecast daily groundwater levels[J]. Water Resources Management, 2017, 31(5): 1591−1603. doi: 10.1007/s11269-017-1598-5
|
[8] |
Wunsch A, Liesch T, Broda S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX)[J]. Journal of Hydrology, 2018, 567: 743−758. doi: 10.1016/j.jhydrol.2018.01.045
|
[9] |
Di Nunno F, Granata F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network[J]. Environmental Research, 2020, 190: 110062. doi: 10.1016/j.envres.2020.110062
|
[10] |
Cannas B, Fanni A, See L, et al. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(18): 1164−1171. doi: 10.1016/j.pce.2006.03.020
|
[11] |
Zhang Juan, Qiu Han, Li Xiaoyu, et al. Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach[J]. Environmental Science & Technology, 2018, 52(15): 8446−8455.
|
[12] |
Nason G P, Von Sachs R. Wavelets in time-series analysis[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 1999, 357(1760): 2511−2526. doi: 10.1098/rsta.1999.0445
|
[13] |
Moosavi V, Vafakhah M, Shirmohammadi B, et al. A Wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods[J]. Water Resources Management, 2013, 27(5): 1301−1321. doi: 10.1007/s11269-012-0239-2
|
[14] |
Zhang Xiaoying, Dong Fan, Dai Heng, et al. Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers[J]. Hydrogeology Journal, 2020, 28(4): 1419−1429. doi: 10.1007/s10040-020-02136-8
|
[15] |
Kisi O, Shiri J. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models[J]. Water Resources Management, 2011, 25(13): 3135−3152. doi: 10.1007/s11269-011-9849-3
|
[16] |
Mohanty S, Jha M K, Raul S K, et al. Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites[J]. Water Resources Management, 2015, 29(15): 5521−5532. doi: 10.1007/s11269-015-1132-6
|
[17] |
Nourani V, Alami M T, Vousoughi F D, et al. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling[J]. Journal of Hydrology, 2015, 524: 255−269. doi: 10.1016/j.jhydrol.2015.02.048
|
[18] |
Adamowski J, Chan H F. A wavelet neural network conjunction model for groundwater level forecasting[J]. Journal of Hydrology, 2011, 407(1/4): 28−40.
|
[19] |
Gorgij A D, Kisi O, Moghaddam A A. Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran[J]. Hydrology Research, 2017, 48(2): 455−467. doi: 10.2166/nh.2016.202
|
[20] |
张建锋, 刘见宝, 崔树军, 等. 小波–神经网络混合模型预测地下水水位[J]. 长江科学院院报, 2016, 33(8): 18−21. doi: 10.11988/ckyyb.20150474
Zhang Jianfeng, Liu Jianbao, Cui Shujun, et al. A wavelet-ANN hybrid model for groundwater level forecasting[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 18−21. doi: 10.11988/ckyyb.20150474
|
[21] |
Seo Y, Kim S, Kisi O, et al. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques[J]. Journal of Hydrology, 2015, 520: 224−243. doi: 10.1016/j.jhydrol.2014.11.050
|
[22] |
Zhang Juan, Zhang Xiaoying, Niu Jie, et al. Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model[J]. Journal of Hydrology, 2019, 577: 123948. doi: 10.1016/j.jhydrol.2019.123948
|
[23] |
陈广泉. 莱州湾地区海水入侵的影响机制及预警评价研究[D]. 上海: 华东师范大学, 2013.
Chen Guangquan. Mechanisms underlying of seawater intrusion and evaluation of early warning systems in the Laizhou Bay area[D]. Shanghai: East China Normal University, 2013.
|
[24] |
Chen Guangquan, Xiong Guiyao, Lin Jin, et al. Elucidating the pollution sources and groundwater evolution in typical seawater intrusion areas using hydrochemical and environmental stable isotope technique: a case study for Shandong Province, China[J]. Lithosphere, 2021, 2021(S3): 4227303.
|
[25] |
苗晋杰. 莱州湾南岸海(咸)水入侵动态监测及演化研究[D]. 北京: 中国地质大学(北京), 2014.
Miao Jinjie. Dynamic monitoring and evolution study of saline intrusion at south coast of LaiZhou Bay[D]. Beijing: China University of Geosciences (Beijing), 2014.
|
[26] |
Zhang Xiaoying, Miao Jinjie, Hu B X, et al. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China)[J]. Environmental Science and Pollution Research, 2017, 24(26): 21073−21090. doi: 10.1007/s11356-017-9641-x
|
[27] |
Gedalof Z, Smith D J. Interdecadal climate variability and regime-scale shifts in Pacific North America[J]. Geophysical Research Letters, 2001, 28(8): 1515−1518. doi: 10.1029/2000GL011779
|
[28] |
Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561−566. doi: 10.5194/npg-11-561-2004
|
[29] |
Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674−693. doi: 10.1109/34.192463
|
[30] |
Shensa M J. The discrete wavelet transform: wedding the a trous and Mallat algorithms[J]. IEEE Transactions on Signal Processing, 1992, 40(10): 2464−2482. doi: 10.1109/78.157290
|
[31] |
Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179−211. doi: 10.1207/s15516709cog1402_1
|
[32] |
Lin T, Horne B G, Tino P, et al. Learning long-term dependencies in NARX recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1996, 7(6): 1329−1338. doi: 10.1109/72.548162
|
[33] |
Chatterjee S, Nigam S, Singh J B, et al. Software fault prediction using Nonlinear Autoregressive with eXogenous Inputs (NARX) network[J]. Applied Intelligence, 2012, 37(1): 121−129. doi: 10.1007/s10489-011-0316-x
|
[34] |
柴琳娜, 屈永华, 张立新, 等. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756−768. doi: 10.3321/j.issn:1001-8166.2009.07.009
Chai Linna, Qu Yonghua, Zhang Lixin, et al. Estimating time series leaf area index based on recurrent neural networks[J]. Advances in Earth Science, 2009, 24(7): 756−768. doi: 10.3321/j.issn:1001-8166.2009.07.009
|
[35] |
Adamowski J, Sun K R. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds[J]. Journal of Hydrology, 2010, 390(1/2): 85−91.
|
[36] |
Tiwari M K, Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach[J]. Journal of Hydrology, 2010, 394(3/4): 458−470.
|
[37] |
苗青. 降雨与潮汐作用对莱州湾地区海水入侵的影响机制研究[D]. 青岛: 国家海洋局第一海洋研究所, 2013.
Miao Qing. Effects of precipitation and tide on seawater intrusion in the Laizhou Bay[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2013.
|
[38] |
李志威, 张晓影, 张明珠, 等. 海水入侵指标对比分析与评价——以珠江口地下水含水层为例[J]. 海洋环境科学, 2020, 39(1): 16−24. doi: 10.12111/j.mes20200103
Li Zhiwei, Zhang Xiaoying, Zhang Mingzhu, et al. Comparison of indicators for the assessment of saltwater intrusion in coastal aquifers—taking aquifers in Pearl River Estuary as an example[J]. Marine Environmental Science, 2020, 39(1): 16−24. doi: 10.12111/j.mes20200103
|
[39] |
王玉广, 王传珺, 刘志华, 等. 地下水位和海平面变化对绥中砂质海岸海水入侵影响[J]. 海洋环境科学, 2019, 38(3): 347−352. doi: 10.12111/j.mes20190305
Wang Yuguang, Wang Chuanjun, Liu Zhihua, et al. Impact to the the seawater intrusion around sand coast in Suizhong with the variations of groundwater level and sea level[J]. Marine Environmental Science, 2019, 38(3): 347−352. doi: 10.12111/j.mes20190305
|
[40] |
覃光雄, 胡晓农, 张晓影, 等. 珠江河口区地下水盐分空间变异特征分析[J]. 海洋环境科学, 2018, 37(6): 835−842. doi: 10.12111/j.cnki.mes20180606
Qin Guangxiong, Hu Xiaonong, Zhang Xiaoying, et al. Characterization of groundwater salinity spatial variation in the Pearl River estuary[J]. Marine Environmental Science, 2018, 37(6): 835−842. doi: 10.12111/j.cnki.mes20180606
|
[41] |
刘启和. 辽阳市地下水电导率特性研究[J]. 水利技术监督, 2017, 25(3): 60−62, 91. doi: 10.3969/j.issn.1008-1305.2017.03.021
Liu Qihe. Study on conductivity characteristics of groundwater in Liaoyang City[J]. Technical Supervision in Water Resources, 2017, 25(3): 60−62, 91. doi: 10.3969/j.issn.1008-1305.2017.03.021
|
[42] |
章斌, 宋献方, 韩冬梅, 等. 运用数理统计和模糊数学评价秦皇岛洋戴河平原的海水入侵程度[J]. 地理科学, 2013, 33(3): 342−348.
Zhang Bin, Song Xianfang, Han Dongmei, et al. Seawater intrusion degree evaluation based on mathematical statistics and fuzzy mathematics in Qinhuangdao Yangdai River plain[J]. Scientia Geographica Sinica, 2013, 33(3): 342−348.
|
[43] |
赵世彬, 陈广泉, 张晓影, 等. 潮汐影响下的海岸带地下河口水交换及其生物地球化学效应[J]. 海洋地质前沿, 2018, 34(9): 73−78.
Zhao Shibin, Chen Guangquan, Zhang Xiaoying, et al. Water exchange and biogeochemical effects of subterranean estuary with tide[J]. Marine Geology Frontiers, 2018, 34(9): 73−78.
|