Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Li Yingdong,Zhang Chongliang,Ji Yupeng, et al. Effects of sampling design on estimation of spatial pattern indices of fish population[J]. Haiyang Xuebao,2022, 44(1):36–47 doi: 10.12284/hyxb2022010
Citation: Li Yingdong,Zhang Chongliang,Ji Yupeng, et al. Effects of sampling design on estimation of spatial pattern indices of fish population[J]. Haiyang Xuebao,2022, 44(1):36–47 doi: 10.12284/hyxb2022010

Effects of sampling design on estimation of spatial pattern indices of fish population

doi: 10.12284/hyxb2022010
  • Received Date: 2021-07-04
  • Rev Recd Date: 2021-08-13
  • Available Online: 2021-09-10
  • Publish Date: 2022-01-14
  • The study of spatial patterns of fish populations provides reference for reasonable utilization and management of fishery resources, which depends greatly on the quality of data collected from well-designed surveys. So appropriate sampling designs are essential in fishery-independent surveys, which can greatly affect the accuracy and applicability of the survey results. Computer simulation study is conducted to investigate the effects of sampling design on the spatial pattern of fish populations based on the data collected from bottom trawl surveys in the southern waters off Shandong Peninsula in four seasons from 2016 to 2017 in this study. Four sampling methods, including simple random sampling (SRS), systematic sampling (SYS), stratified random sampling (StRS) and stratified systematic sampling (StSS) with four levels of sample sizes are considered as potential sampling designs in this simulation study. The effects of different sampling designs on the estimation of mean crowding index and poly block index (PBI) for Conger myriaster and Enedrias fangi are examined. Relative estimation error (REE) and relative bias (RB) are used to measure the performances of different sampling designs. The results show that the simulated values of spatial pattern indices from SYS and StSS are closer to the “true” values, and the performances of SRS and StRS are relatively poor. The REE of estimation of spatial pattern indices for target fish populations decreased significantly with sample size. The original spatial pattern of fish populations has a certain effect on the estimation of spatial pattern indices. The precision of estimation of PBI decreased with the increase of the “true” values of spatial pattern indices, with PBI being overestimated when it is high. Different sampling designs have a certain effect on the estimation of spatial pattern indices of fish populations, and the degree of population aggregation also affected the analysis results. Therefore, the spatial pattern indices of target fish populations could be incorporated into the survey goals in sampling designs to improve the fishery-independent surveys with multiple objectives.
  • [1]
    何大仁, 蔡厚才. 鱼类行为学[M]. 厦门: 厦门大学出版社, 1998: 236−266.

    He Daren, Cai Houcai. Fish Behavior Ecology[M]. Xiamen: Xiamen University Press, 1998: 236−266.
    [2]
    蔡建堤, 徐春燕, 马超, 等. 闽东北海域中华管鞭虾种群聚集特性[J]. 生态学报, 2017, 37(6): 1844−1850.

    Cai Jiandi, Xu Chunyan, Ma Chao, et al. Aggregations of the Solenocera crassicornis in the sea area northeast of Fujian[J]. Acta Ecologica Sinica, 2017, 37(6): 1844−1850.
    [3]
    林龙山, 郑元甲, 马春艳. 台湾海峡夏秋季游泳动物资源分布及群落结构[J]. 应用生态学报, 2005, 16(10): 1948−1951. doi: 10.3321/j.issn:1001-9332.2005.10.029

    Lin Longshan, Zheng Yuanjia, Ma Chunyan. Distribution of nekton stock density and its community structure in Taiwan Strait in summer and autumn[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1948−1951. doi: 10.3321/j.issn:1001-9332.2005.10.029
    [4]
    王雨群, 王晶, 薛莹, 等. 黄河口水域主要鱼种的时空生态位宽度和重叠[J]. 中国水产科学, 2019, 26(5): 938−948.

    Wang Yuqun, Wang Jing, Xue Ying, et al. Width and overlap of spatial and temporal ecological niches for main fish species in the Yellow River estuary[J]. Journal of Fishery Sciences of China, 2019, 26(5): 938−948.
    [5]
    刘勇. 渔业资源评估抽样调查方法的理论探讨与研究[D]. 上海: 华东师范大学, 2012: 13-27.

    Liu Yong. Theoretical study on the sampling methods of survey for fishery stock estimation[D]. Shanghai: East China Normal University, 2012: 13−27.
    [6]
    Cochran W G. Sampling Techniques[M]. 3rd ed. New York: John Wiley & Sons, 1977: 1−16.
    [7]
    Yu Hao, Jiao Yan, Su Zhenming, et al. Performance comparison of traditional sampling designs and adaptive sampling designs for fishery-independent surveys: a simulation study[J]. Fisheries Research, 2012, 113(1): 173−181. doi: 10.1016/j.fishres.2011.10.009
    [8]
    Simmonds E J, Fryer R J. Which are better, random or systematic acoustic surveys? A simulation using North Sea herring as an example[J]. ICES Journal of Marine Science, 1996, 53(1): 39−50. doi: 10.1006/jmsc.1996.0004
    [9]
    韩青鹏, 单秀娟, 金显仕, 等. 多目标资源调查站位优化设计——以渤海为例[J]. 渔业科学进展, 2019, 40(1): 1−11.

    Han Qingpeng, Shan Xiujuan, Jin Xianshi, et al. Study on optimizing sampling design of multi-objective fishery-independent surveys: a case study in the Bohai Sea[J]. Progress in Fishery Sciences, 2019, 40(1): 1−11.
    [10]
    Xu Binduo, Ren Yiping, Chen Yong, et al. Optimization of stratification scheme for a fishery-independent survey with multiple objectives[J]. Acta Oceanologica Sinica, 2015, 34(12): 154−169. doi: 10.1007/s13131-015-0739-z
    [11]
    陈大刚. 黄渤海渔业生态学[M]. 北京: 海洋出版社, 1991: 8-12.

    Chen Dagang. Fisheries Ecology in the Yellow Sea and Bohai Sea[M]. Beijing: China Ocean Press, 1991: 8−12.
    [12]
    唐启升, 叶懋中. 山东近海渔业资源开发与保护[M]. 北京: 农业出版社, 1990: 137-144.

    Tang Qisheng, Ye Maozhong. The Exploitation and Conservation of Near-shore Fisheries Resources of Shandong[M]. Beijing: China Agriculture Press, 1990: 137−144.
    [13]
    李敏, 李增光, 徐宾铎, 等. 时空和环境因子对海州湾方氏云鳚资源丰度分布的影响[J]. 中国水产科学, 2015, 22(4): 812−819.

    Li Min, Li Zengguang, Xu Binduo, et al. Effects of spatiotemporal and environmental factors on the distribution and abundance of Pholis fangi in Haizhou Bay using a generalized additive model[J]. Journal of Fishery Sciences of China, 2015, 22(4): 812−819.
    [14]
    张春光. 中国动物志·硬骨鱼纲: 鳗鲡目、背棘鱼目[M]. 北京: 科学出版社, 2010: 199-203.

    Zhang Chunguang. Fauna SinicaOsteichthyes: Anguilliformes, Notacanthiformes[M]. Beijing: Science Press, 2010: 199−203.
    [15]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007 Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2007.
    [16]
    牟秀霞, 李明坤, 尹洁, 等. 山东半岛东南部海域星康吉鳗资源密度时空分布及其与环境因子之间关系[J]. 水产学报, 2019, 43(8): 1759−1767.

    Mu Xiuxia, Li Mingkun, Yin Jie, et al. Relationship between spatio-temporal distribution of Conger myriaster and the environment factors in the southeast waters of Shandong Peninsula[J]. Journal of Fisheries of China, 2019, 43(8): 1759−1767.
    [17]
    毕远溥. 方氏云鳚渔业生物学及其在辽宁沿海的渔业[J]. 水产科学, 2005, 24(9): 27−28. doi: 10.3969/j.issn.1003-1111.2005.09.009

    Bi Yuanpu. Biology and its fishery of Fang’s blenny Enedrias fangi Wang et Wang in offshore in Liaoning Province[J]. Fisheries Science, 2005, 24(9): 27−28. doi: 10.3969/j.issn.1003-1111.2005.09.009
    [18]
    Journel A G, Huijbregts C J. Mining Geostatistics[M]. London: Academic Press, 1978.
    [19]
    Lloyd M. Mean crowding[J]. Journal of Animal Ecology, 1967, 36(1): 1−30. doi: 10.2307/3012
    [20]
    张金屯. 数量生态学[M]. 2版. 北京: 科学出版社, 2011: 259-269.

    Zhang Jintun. Quantitative Ecology[M]. 2nd ed. Beijing: Science Press, 2011: 259−269.
    [21]
    Chen Yong. A monte Carlo study on impacts of the size of subsample catch on estimation of fish stock parameters[J]. Fisheries Research, 1996, 26(3/4): 207−223.
    [22]
    Paloheimo J E, Chen Y. Estimating fish mortalities and cohort sizes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(7): 1572−1579. doi: 10.1139/f96-077
    [23]
    Wang Jing, Xu Binduo, Zhang Chongliang, et al. Evaluation of alternative stratifications for a stratified random fishery-independent survey[J]. Fisheries Research, 2018, 207: 150−159. doi: 10.1016/j.fishres.2018.06.019
    [24]
    Cao Jie, Chen Yong, Chang J H, et al. An evaluation of an inshore bottom trawl survey design for American lobster (Homarus americanus) using computer simulations[J]. Journal of Northwest Atlantic Fishery Science, 2014, 46: 27−39. doi: 10.2960/J.v46.m696
    [25]
    李明坤, 张崇良, 李敏, 等. 山东南部近海秋、冬季星康吉鳗分布与环境因子的关系[J]. 中国水产科学, 2018, 25(5): 1115−1122. doi: 10.3724/SP.J.1118.2018.17426

    Li Mingkun, Zhang Chongliang, Li Min, et al. Relationship between the spatiotemporal distribution of Conger myriaster and environmental factors in the southern waters off the Shandong Peninsula during autumn and winter[J]. Journal of Fishery Sciences of China, 2018, 25(5): 1115−1122. doi: 10.3724/SP.J.1118.2018.17426
    [26]
    王晶. 渔业资源调查采样设计的评估与优化[D]. 青岛: 中国海洋大学, 2019.

    Wang Jing. Evaluation and optimization of sampling designs for fishery-independent surveys[D]. Qingdao: Ocean University of China, 2019.
    [27]
    Fernandes R F, Scherrer D, Guisan A. How much should one sample to accurately predict the distribution of species assemblages? A virtual community approach[J]. Ecological Informatics, 2018, 48: 125−134. doi: 10.1016/j.ecoinf.2018.09.002
    [28]
    Kurogi H, Mochioka N, Okazaki M, et al. Discovery of a spawning area of the common Japanese conger Conger myriaster along the Kyushu-Palau Ridge in the western North Pacific[J]. Fisheries Science, 2012, 78(3): 525−532. doi: 10.1007/s12562-012-0468-6
    [29]
    Gorie S, Nagasawa K. Habitat preference and feeding habits of juvenile whitespotted conger Conger myriaster in the eastern Seto Inland Sea, Japan[J]. Aquaculture Science, 2010, 58(2): 167−179.
    [30]
    刘爱利, 王培法, 丁园圆. 地统计学概论[M]. 北京: 科学出版社, 2012.

    Liu Aili, Wang Peifa, Ding Yuanyuan. Introduction to Geostatistics[M]. Beijing: Science Press, 2012.
    [31]
    于新文, 刘晓云. 昆虫种群空间格局的研究方法评述[J]. 西北林学院学报, 2001, 16(3): 83−87. doi: 10.3969/j.issn.1001-7461.2001.03.022

    Yu Xinwen, Liu Xiaoyun. Review of research methods on spatial pattern of insect population[J]. Journal of Northwest Forestry University, 2001, 16(3): 83−87. doi: 10.3969/j.issn.1001-7461.2001.03.022
  • Relative Articles

    [1]Zhao Ruohan, Yang Jing, Sun Yang, He Yuyan, Wang Jing, Wang Yingbin, Li Yuru. Spatial patterns of the fish community and their seasonal variations in Zhoushan Fishing Ground[J]. Haiyang Xuebao. doi: 10.12284/hyxb2025052
    [2]Zou Jianyu, Liu Shude, Zhang Chongliang, Xue Ying, Ji Yupeng, Xu Binduo. Seasonal and spatial changes in functional diversity of fish communities in the adjacent waters of the Changshan Islands[J]. Haiyang Xuebao, 2023, 45(1): 13-24. doi: 10.12284/hyxb2023008
    [3]Shen Duqing, Zhang Yunlei, Cui Yanhua, Yu Huaming, Zhang Chenyu, Xu Binduo, Zhang Chongliang, Ji Yupeng, Xue Ying. Study on the influencing factors of fish spatial distribution using three Bayesian models: a case study of Amblychaeturichthys hexanema in Haizhou Bay[J]. Haiyang Xuebao, 2023, 45(11): 88-100. doi: 10.12284/hyxb2023160
    [4]Song Yuanliu, Liu Xiaoshou. Spatial distribution patterns of meiofauna and the influencing environmental factors in the southern Yellow Sea in summer and autumn[J]. Haiyang Xuebao, 2023, 45(1): 38-52. doi: 10.12284/hyxb2023020
    [5]Wu Zhen, Zhang Chongliang, Xue Ying, Ji Yupeng, Ren Yiping, Xu Binduo. Spatial heterogeneity of demersal fish in the offshore waters of Shandong[J]. Haiyang Xuebao, 2022, 44(2): 21-28. doi: 10.12284/hyxb2022072
    [6]Ou Liguo, Wang Bingyan, Liu Bilin, Chen Xinjun, Chen Yong, Wu Feng, Liu Pan. Automatic measurement of morphological indexes of three Thunnus species based on computer vision[J]. Haiyang Xuebao, 2021, 43(11): 105-115. doi: 10.12284/hyxb2021140
    [7]Pan Shaoyuan, Wang Xuefang, Tian Siquan, Tong Jianfeng, Gao Chunxia, Zhao Jing, Han Dongyan. The design of the stations of marine environmental monitoring buoys in the Chinese sturgeon nature reserve in the Changjiang River Estuary[J]. Haiyang Xuebao, 2021, 43(4): 55-64. doi: 10.12284/hyxb2021034
    [8]Wang Riming, Dai Zhijun, Huang Hu, Liang Xixing, Li Shushi, Hu Baoqing, Zhou Xiaoyan, Wu Tianliang. Spatial patterns of the mangrove along the riverine estuaries, Nanliujiang River and Dafengjiang River of the Beibu Gulf[J]. Haiyang Xuebao, 2020, 42(12): 54-61. doi: 10.3969/j.issn.0253-4193.2020.12.006
    [9]Luo Chenyi, Nie Hongtao, Zhang Haiyan. Spatial variability of parameter sensitivity in the ecosystem simulation of the Bohai Sea and Yellow Sea[J]. Haiyang Xuebao, 2019, 41(8): 85-96. doi: 10.3969/j.issn.0253-4193.2019.08.008
    [10]Wei Hao, Zhao Wei, Luo Xiaofan, Nie Hongtao, Hu Xianmin, Lu Youyu. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao, 2019, 41(9): 65-79. doi: 10.3969/j.issn.0253-4193.2019.09.006
    [11]Shang Kexu, Guo Xiujun, Wu Jingxin. Simulation analysis of the detection effect of navigation marine direct current resistivity to seabed macro seepage and a system's design[J]. Haiyang Xuebao, 2019, 41(1): 142-150. doi: 10.3969/j.issn.0253-4193.2019.01.014
    [12]Wang Kun, Zhang Chongliang, Wang Jing, Ren Yiping. Spatial heterogeneity of growth traits of four fish species in the Haizhou Bay[J]. Haiyang Xuebao, 2019, 41(12): 62-70. doi: 10.3969/j.issn.0253-4193.2019.12.006
    [13]Xiao Huanhuan, Zhang Chongliang, Xu Binduo, Xue Ying, Liu Hong, Li Zengguang, Ren Yiping. Spatial pattern of ichthyoplankton assemblage in the coastal waters of central and southern Yellow Sea in the spring[J]. Haiyang Xuebao, 2017, 39(8): 34-47. doi: 10.3969/j.issn.0253-4193.2017.08.004
    [14]LI Sheng-fa, CHENG Jia-hua, YAN Li-ping. The spatial pattern of the fish assemblage structure in the mid-southern East China Sea[J]. Haiyang Xuebao, 2005, 27(3): 110-118.
    [15]LIU Xiao-lin, CHANG Ya-qing, XIANG Jian-hai, LI Fu-hua, SONG Jian, DING Jun, DONG Bo, LIU Xian-jie. Studies on hybridization of the different geographic variety populations of Chlamys farreri Ⅰ. Hybridization between Chinese population and Russian population of Chlamys farreri[J]. Haiyang Xuebao, 2003, 25(1): 93-99.
    [16]JIA Jian-hang, CHEN Yi-hua, SHI Jin-feng, JIN De-min, XU Pu, MEI Jun-cue, WENG Man-li, WANG Bin. Construction of computerized DNA fingerprinting for identification of Porphyra lines[J]. Haiyang Xuebao, 2001, 23(1): 79-84.
    [20]Zhu Jimao(Chu Chi-mao). ANALYSIS OF SPECIAL CONSIDERATIONS IN THE DESIGN OF SUBMERSIBLES[J]. Haiyang Xuebao, 1981, 3(2): 307-329.
  • Cited by

    Periodical cited type(2)

    1. 刘芷维,周雨霏,郑琳琳,麻秋云,崔明远. 数据不确定性对西北太平洋两种混栖鲐生长研究的影响. 上海海洋大学学报. 2024(04): 848-858 .
    2. 邓越秀,黄永恒,董建宇,陈宁,张静,王学锋. 渔业生物多样性评估为目标的站位优化设计实现——以茂名海域为例. 渔业科学进展. 2024(06): 1-12 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.7 %FULLTEXT: 28.7 %META: 65.8 %META: 65.8 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %其他: 1.2 %其他: 1.2 %China: 1.7 %China: 1.7 %France: 0.2 %France: 0.2 %India: 0.7 %India: 0.7 %Norway: 0.2 %Norway: 0.2 %United States: 0.2 %United States: 0.2 %[]: 1.0 %[]: 1.0 %上海: 1.2 %上海: 1.2 %中山: 0.2 %中山: 0.2 %包头: 0.2 %包头: 0.2 %北京: 3.6 %北京: 3.6 %北方邦: 0.7 %北方邦: 0.7 %南京: 0.5 %南京: 0.5 %台州: 0.2 %台州: 0.2 %吉林: 0.2 %吉林: 0.2 %多伦多: 0.5 %多伦多: 0.5 %大同: 0.2 %大同: 0.2 %天津: 1.4 %天津: 1.4 %威海: 0.2 %威海: 0.2 %安娜堡: 0.2 %安娜堡: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.2 %广州: 0.2 %廊坊: 1.2 %廊坊: 1.2 %张家口: 6.2 %张家口: 6.2 %无锡: 2.1 %无锡: 2.1 %杭州: 0.5 %杭州: 0.5 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.2 %沈阳: 0.2 %海口: 0.2 %海口: 0.2 %温州: 0.2 %温州: 0.2 %湛江: 1.0 %湛江: 1.0 %漯河: 0.2 %漯河: 0.2 %烟台: 0.2 %烟台: 0.2 %珠海: 0.2 %珠海: 0.2 %盐城: 0.2 %盐城: 0.2 %突尼斯省: 0.5 %突尼斯省: 0.5 %舟山: 1.2 %舟山: 1.2 %芒廷维尤: 41.6 %芒廷维尤: 41.6 %芝加哥: 1.4 %芝加哥: 1.4 %衢州: 0.5 %衢州: 0.5 %西宁: 13.5 %西宁: 13.5 %西雅图: 0.5 %西雅图: 0.5 %运城: 1.7 %运城: 1.7 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.2 %郑州: 1.2 %重庆: 0.2 %重庆: 0.2 %锡拉库扎: 0.5 %锡拉库扎: 0.5 %长春: 0.7 %长春: 0.7 %阳泉: 0.2 %阳泉: 0.2 %陵水: 0.7 %陵水: 0.7 %青岛: 2.4 %青岛: 2.4 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他其他ChinaFranceIndiaNorwayUnited States[]上海中山包头北京北方邦南京台州吉林多伦多大同天津威海安娜堡宣城广州廊坊张家口无锡杭州格兰特县武汉沈阳海口温州湛江漯河烟台珠海盐城突尼斯省舟山芒廷维尤芝加哥衢州西宁西雅图运城邯郸郑州重庆锡拉库扎长春阳泉陵水青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (277) PDF downloads(23) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return