Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Wang Yue,Liu Chun,Liu Xiaolei, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao,2021, 43(11):88–95 doi: 10.12284/hyxb2021160
Citation: Wang Yue,Liu Chun,Liu Xiaolei, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao,2021, 43(11):88–95 doi: 10.12284/hyxb2021160

Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed

doi: 10.12284/hyxb2021160
  • Received Date: 2020-12-02
  • Rev Recd Date: 2021-02-09
  • Available Online: 2021-08-10
  • Publish Date: 2021-12-31
  • The seabed soil layer will gradually accumulate pore pressure under the action of wave cyclic load, reduce the stability of the soil layer, and threaten offshore engineering. In order to study the accumulation mechanism of pore water pressure, the discrete element pore density flow method was proposed, and the discrete element analysis software MatDEM was improved to realize the simulation of the accumulation process of seabed sediment pore pressure. Based on the field test device and the mechanical parameters of the soil body, a discrete element model was established. By comparing field test and numerical simulation results, it was found that after applying the wave load to the seabed sediment, a higher pore pressure was generated in the surface soil body and gradually transferred to the deep layer. Under the action of cyclic wave load, the cumulative range of pore pressure between soil particles gradually increased. When the pore pressure accumulation time was long enough, the pore pressure in the soil layer converged to the average of the maximum and minimum loads applied. As the number of load cycles increased, the pore pressure at all depths increased cumulatively until the soil body liquefied and the internal soil particles became resuspended sediments. Under the action of periodic wave loads, the soil particles moved after being liquefied and suspended, and the shallow particles had a large displacement, and the overall performance of the soil was circular arc movement.
  • loading
  • [1]
    常方强, 贾永刚. 黄河口粉质土海床液化过程的现场试验研究[J]. 土木工程学报, 2012, 45(1): 121−126.

    Chang Fangqiang, Jia Yonggang. In-situ test to study silt liquefaction at the subaqueous delta of Yellow River[J]. China Civil Engineering Journal, 2012, 45(1): 121−126.
    [2]
    Anderson D, Cox D, Mieras R, et al. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 5169−5193. doi: 10.1002/2016JC012557
    [3]
    Niu Jianwei, Xu Jishang, Dong Ping, et al. Pore water pressure responses in silty sediment bed under random wave action[J]. Scientific Reports, 2019, 9(1): 11685. doi: 10.1038/s41598-019-48119-y
    [4]
    刘晓磊, 贾永刚, 郑杰文. 波浪导致黄河口海床沉积物超孔压响应现场试验研究[J]. 岩土力学, 2015, 36(11): 3055−3062.

    Liu Xiaolei, Jia Yonggang, Zheng Jiewen. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River Estuary[J]. Rock and Soil Mechanics, 2015, 36(11): 3055−3062.
    [5]
    张少同, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 2016, 36(6): 33−44.

    Zhang Shaotong, Jia Yonggang, Liu Xiaolei, et al. Feature and mechanism of sediment dynamic changing processes in the Modern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33−44.
    [6]
    吕豪杰, 周香莲, 王建华. 波浪荷载作用下桩周土体孔隙水压力试验研究[J]. 上海交通大学学报, 2018, 52(7): 757−763.

    Lü Haojie, Zhou Xianglian, Wang Jianhua. Laboratory study of wave-induced pore pressures around the pile[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 757−763.
    [7]
    宋玉鹏, 孙永福, 杜星, 等. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208−214.

    Song Yupeng, Sun Yongfu, Du Xing, et al. Monitoring of silt pore pressure responding process to wave action[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 208−214.
    [8]
    吴雷晔, 朱斌, 陈仁朋, 等. 波浪−海床−结构物相互作用离心模型试验及数值模拟[J]. 土木工程学报, 2019, 52(S2): 186−192.

    Wu Leiye, Zhu Bin, Cheng Renpeng, et al. Centrifuge test and numerical simulation of wave-seabed-structure interaction[J]. China Civil Engineering Journal, 2019, 52(S2): 186−192.
    [9]
    潘冬子, 王立忠, 潘存鸿. 粉质海床波浪响应的数值模拟及试验研究[J]. 岩土力学, 2008, 29(10): 2697−2700, 2707. doi: 10.3969/j.issn.1000-7598.2008.10.020

    Pan Dongzi, Wang Lizhong, Pan Cunhong. Numerical simulation and experimental investigation of wave-induced response in silty seabed[J]. Rock and Soil Mechanics, 2008, 29(10): 2697−2700, 2707. doi: 10.3969/j.issn.1000-7598.2008.10.020
    [10]
    刘涛, 冯秀丽, 林霖. 海底孔压对波浪响应试验研究及数值模拟[J]. 海洋学报, 2006, 28(3): 173−176.

    Liu Tao, Feng Xiuli, Lin Lin. Study of seabed pore water pressure based on in-situ test and numerical simulation[J]. Haiyang Xuebao, 2006, 28(3): 173−176.
    [11]
    周援衡, 卢海斌, 陈智杰. 波浪作用下弹性海床孔隙水应力响应的数值模拟[J]. 水道港口, 2005, 26(2): 67−70. doi: 10.3969/j.issn.1005-8443.2005.02.001

    Zhou Yuanheng, Lu Haibin, Chen Zhijie. Numerical simulation of pore water pressure response of elastic seabed under wave loading[J]. Journal of Waterway and Harbor, 2005, 26(2): 67−70. doi: 10.3969/j.issn.1005-8443.2005.02.001
    [12]
    Liu Chun, Xu Qiang, Shi Bin, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103: 12−20.
    [13]
    雷健, 潘保芝, 张丽华. 基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J]. 地球物理学进展, 2018, 33(2): 653−660. doi: 10.6038/pg2018BB0108

    Lei Jian, Pan Baozhi, Zhang Lihua. Advance of microscopic flow simulation based on digital cores and pore network[J]. Progress in Geophysics, 2018, 33(2): 653−660. doi: 10.6038/pg2018BB0108
    [14]
    刘春, 乐天呈, 施斌, 等. 颗粒离散元法工程应用的三大问题探讨[J]. 岩石力学与工程学报, 2020, 39(6): 1142−1152.

    Liu Chun, Le Tiancheng, Shi Bin, et al. Discussion on three major problems of engineering application of the particle discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1142−1152.
    [15]
    常方强, 贾永刚. 黄河口水下斜坡波致圆弧振荡剪切破坏分析[J]. 海洋学报, 2010, 32(5): 175−179.

    Chang Fangqiang, Jia Yonggang. The analysis on the arc oscillatory shear failure induced by wave on the seabed in the Huanghe Estuary[J]. Haiyang Xuebao, 2010, 32(5): 175−179.
    [16]
    刘春, 范宣梅, 朱晨光, 等. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例[J]. 工程地质学报, 2019, 27(6): 1362−1370.

    Liu Chun, Fan Xuanmei, Zhu Chenguang, et al. Discrete element modeling and simulation of 3-dimensional large-scale landslide-taking Xinmocun landslide as an example[J]. Journal of Engineering Geology, 2019, 27(6): 1362−1370.
    [17]
    Zhang Jisheng, Tong Linlong, Zheng Jinhai, et al. Effects of soil-resistance damping on wave-induced pore pressure accumulation around a composite breakwater[J]. Journal of Coastal Research, 2018, 34(3): 573−585. doi: 10.2112/JCOASTRES-D-17-00033.1
    [18]
    Liu Xiaoli, Cui Haonan, Jeng D S, et al. A coupled mathematical model for accumulation of wave-induced pore water pressure and its application[J]. Coastal Engineering, 2019, 154: 103577. doi: 10.1016/j.coastaleng.2019.103577
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (421) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return