Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Fu Ruili,Ma Yuxiang,Dong Guohai. Researches on statistical properties of freak waves in uni-directional random waves in deep water[J]. Haiyang Xuebao,2021, 43(10):81–89 doi: 10.12284/hyxb2021159
Citation: Fu Ruili,Ma Yuxiang,Dong Guohai. Researches on statistical properties of freak waves in uni-directional random waves in deep water[J]. Haiyang Xuebao,2021, 43(10):81–89 doi: 10.12284/hyxb2021159

Researches on statistical properties of freak waves in uni-directional random waves in deep water

doi: 10.12284/hyxb2021159
  • Received Date: 2020-07-28
  • Rev Recd Date: 2020-10-29
  • Available Online: 2021-08-26
  • Publish Date: 2021-10-30
  • Numerous random wave trains are simulated based on the JONSWAP spectrum using the Longuet-Higgins wave model, and then extreme waves are investigated based on the wave trains with stable probabilities of freak waves. The probabilities of freak waves are smaller than those of based on Rayleigh distributions. With the spectra narrower, the probability of freak waves increases. During the fixed times, the frequency of freak waves obeys the Poisson distribution and time intervals satisfy exponential distribution. The most probable occurrence frequency of freak waves decrease and intervals of freak waves are longer with the spectra wider. Wave groups are discriminated based on wavelet spectra and their characteristics are analyzed. There are no more than four freak waves in wave groups. The probability of wave groups containing merely one freak wave is the largest. Numbers of freak waves in wave groups are increasing with the spectral narrower. Furthermore, time lengths of wave groups containing freak waves satisfy Generalized extreme value distribution (GEV distribution), and with spectra narrower, the most probable lengths of the wave groups increase.
  • loading
  • [1]
    Dysthe K, Krogstad H E, Müller P. Oceanic rogue waves[J]. Annual Review of Fluid Mechanic, 2008, 40: 287−310. doi: 10.1146/annurev.fluid.40.111406.102203
    [2]
    Cherneva Z, Petrova P, Andreeva N, et al. Probability distributions of peaks, troughs and heights of wind waves measured in the black sea coastal zone[J]. Coastal Engineering, 2005, 52(7): 599−615. doi: 10.1016/j.coastaleng.2005.02.006
    [3]
    Haver S. A possible freak wave event measured at the Draupner Jacket January 1 1995[J]. Proceedings of the Rogue Waves, 2004: 1−8.
    [4]
    Kharif C, Pelinovskiĭ E N, Slunyaev A. Quasi-linear wave focusing[M]//Kharif C, Pelinovskiĭ E N, Slunyaev A. Rogue Waves in the Ocean. Berlin: Springer, 2009: 63−89.
    [5]
    Liu P C. A chronology of freauqe wave encounters[J]. Geofizika, 2007, 24(1): 57−70.
    [6]
    Waseda T. Rogue waves in the ocean[J]. Eos, Transactions American Geophysical Union, 2010, 91(11): 104.
    [7]
    Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J]. Journal of Marine Research, 1952, 11(5): 245−266.
    [8]
    刘赞强, 张宁川. 基于Longuet-Higgins模型的畸形波模拟方法[J]. 水道港口, 2010, 31(4): 236−241. doi: 10.3969/j.issn.1005-8443.2010.04.002

    Liu Zanqiang, Zhang Ningchuan. Numerical methods for simulating freak waves based on the Longuet-Higgins wave model theory[J]. Journal of Waterway and Harbor, 2010, 31(4): 236−241. doi: 10.3969/j.issn.1005-8443.2010.04.002
    [9]
    Gemmrich J, Garrett C. Unexpected waves[J]. Journal of Physical Oceanography, 2008, 38(10): 2330−2336. doi: 10.1175/2008JPO3960.1
    [10]
    Brodtkorb P A, Johannesson P, Lindgren G, et al. WAFO-a Matlab toolbox for analysis of random waves and loads[C]//The Proceedings of the 10th (2000) International Offshore and Polar Engineering Conference v. 3. Seattle: WAFO, 2001: 343−350.
    [11]
    Gemmrich J, Garrett C. Unexpected waves: Intermediate depth simulations and comparison with observations[J]. Ocean Engineering, 2010, 37(2/3): 262−267.
    [12]
    Ghane M, Gao Zhen, Blanke M, et al. On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process[J]. IEEE Access, 2018, 6: 15236−15248. doi: 10.1109/ACCESS.2018.2816600
    [13]
    潘玉萍, 葛苏放, 沙文钰, 等. 由模拟波面分析双峰谱型海浪的统计特征[J]. 海洋学报, 2009, 31(4): 13−21.

    Pan Yuping, Ge Sufang, Sha Wenyu, et al. An analysis on the statistical characteristic of sea waves with double-peaked spectrum[J]. Haiyang Xuebao, 2009, 31(4): 13−21.
    [14]
    毛青, 马玉祥, 袁长富. 基于数值模拟的畸形波统计特性研究[C]//第二十九届全国水动力学研讨会论文集(下册). 北京: 海洋出版社, 2018: 485−495.

    Mao Qing, Ma Yuxiang, Yuan Changfu. Research on statistical properties of freak wave based on numerical simulation[C]//Proceedings of the 29th National Conference on Hydrodynamics. Beijing: China Ocean Press, 2018: 485−495.
    [15]
    Veritas N. Environmental Conditions and Environmental Loads[M]. H̨vik: Det Norske Veritas, 2000.
    [16]
    Slunyaev A. Nonlinear analysis and simulations of measured freak wave time series[J]. European Journal of Mechanics-B/Fluids, 2006, 25(5): 621−635. doi: 10.1016/j.euromechflu.2006.03.005
    [17]
    Slunyaev A, Pelinovsky E, Soares C G. Modeling freak waves from the North Sea[J]. Applied Ocean Research, 2005, 27(1): 12−22. doi: 10.1016/j.apor.2005.04.002
    [18]
    Trulsen K. Simulating the spatial evolution of a measured time series of a freak wave[C]//Proceedings of a Workshop. Brest: IFREMER, 2001: 265−273.
    [19]
    Osborne A R, Onorato M, Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains[J]. Physics Letters A, 2000, 275(5/6): 386−393.
    [20]
    Clauss G F. Dramas of the sea: Episodic waves and their impact on offshore structures[J]. Applied Ocean Research, 2002, 24(3): 147−161. doi: 10.1016/S0141-1187(02)00026-3
    [21]
    崔成, 张宁川. 畸形波生成, 演化过程时频能量结构研究[J]. 海洋工程, 2011, 29(3): 59−66.

    Cui Cheng, Zhang Ningchuan. Research on the time-frequency energy structure of generation and evolution of freak wave[J]. The Ocean Engineering, 2011, 29(3): 59−66.
    [22]
    Onorato M, Proment D, Toffoli A. Triggering rogue waves in opposing currents[J]. Physical Review Letters, 2011, 107(18): 184502. doi: 10.1103/PhysRevLett.107.184502
    [23]
    Magnusson A K, Trulsen K, Aarnes O J, et al. “Three Sisters” measured as a triple rogue wave group[C]//ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow: ASME, 2019: 1−8.
    [24]
    Olagnon M. Rogue Waves: Anatomy of a Monster[M]. Taylor R D, trans. London: Adlard Coles Nautical, 2017.
    [25]
    Liu P C, Hawley N. Wave grouping characteristics in nearshore Great Lakes II[J]. Ocean Engineering, 2002, 29(11): 1415−1425. doi: 10.1016/S0029-8018(01)00079-8
    [26]
    Hasselmann K F, Barnett T, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[M]. Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift, 1973: 8−12.
    [27]
    Tao Aifeng, Qi Keren, Zheng Jinhai, et al. The occurrence probabilities of rogue waves in different nonlinear stages[J]. Coastal Engineering Proceedings, 2014, 34: 1−6.
    [28]
    翟钢军, 唐东洋, 刘琨, 等. 风浪联合作用下深水半潜式平台运动响应模型试验研究[J]. 中国海洋平台, 2011, 26(6): 43−48. doi: 10.3969/j.issn.1001-4500.2011.06.010

    Zhai Gangjun, Tang Dongyang, Liu Kun, et al. Experimental analysis for the motion response of deep-water semi-submersible platform under wind and waves[J]. China Offshore Platform, 2011, 26(6): 43−48. doi: 10.3969/j.issn.1001-4500.2011.06.010
    [29]
    Longuet-Higgins M S. The statistical analysis of a random, moving surface[J]. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 1957, 249(966): 321−387.
    [30]
    Tao Aifeng, Peng Ji, Zheng Jinhai, et al. Discussions on the occurrence probabilities of observed freak waves[J]. Journal of Marine Science and Technology, 2015, 23(6): 923−928.
    [31]
    Wang Y, Tao A F, Zheng J H, et al. A preliminary investigation of rogue waves off the Jiangsu coast, China[J]. Natural Hazards and Earth System Sciences, 2014, 14(9): 2521−2527. doi: 10.5194/nhess-14-2521-2014
    [32]
    毛青. 基于数值模拟的海面突发巨浪统计特征研究[D]. 大连: 大连理工大学, 2019.

    Mao Qing. Study on the statistical characteristics of sudden appearance huge waves using numerical simulations[D]. Dalian: Dalian University of Technology, 2019.
    [33]
    Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics-B/Fluids, 2003, 22(6): 603−634. doi: 10.1016/j.euromechflu.2003.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (406) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return