Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Zhang Jingwei,Zhu Jialiang,Yao Yubin, et al. Physical and optical properties of the first-year ice in the Amundsen Gulf of the Arctic[J]. Haiyang Xuebao,2021, 43(7):138–151 doi: 10.12284/hyxb2021153
Citation: Zhang Jingwei,Zhu Jialiang,Yao Yubin, et al. Physical and optical properties of the first-year ice in the Amundsen Gulf of the Arctic[J]. Haiyang Xuebao,2021, 43(7):138–151 doi: 10.12284/hyxb2021153

Physical and optical properties of the first-year ice in the Amundsen Gulf of the Arctic

doi: 10.12284/hyxb2021153
  • Received Date: 2021-02-03
  • Rev Recd Date: 2021-06-26
  • Available Online: 2021-07-14
  • Publish Date: 2021-07-25
  • In the Canadian Circumpolar Flaw Lead System Study, the physical and optical properties of first-year ice during the freezing season were observed at the Amundsen Gulf from November 24th, 2007 to January 26th, 2008. The results show that the thickness of sea ice during this period ranged from 27 cm to 108 cm, while the snow depth varied between 0 cm and 6 cm. The changes of temperature, salinity and density in the interior of sea ice are respectively: temperature within the sea ice rose monotonically along with the increasing of depth, reaching a maximum of −2.2℃ at the surface and a minimum of −22.4℃ at the bottom; the salinity ranged from 3.30 to 11.70 with a C-shaped pattern in its vertical section, which means that the salinity of upper surface and bottom layer is larger than that in the middle part; the average density of the sea ice was slightly larger, which is (0.91±0.03) g/cm3. With the special designing of artificial light source and in-situ instrumentation, an obvious two-peek structure at 490 nm and 589 nm was found in the spectral distribution of the transmitted radiation through the first-year ice. The two-peak structure weakens as the thickness of sea ice increases, indicating the spectrum dependence of the attenuation. In the visible band, the spectral absorbance of both bare ice and snow-covered ice reaches its minimum at 490 nm, and rises as the wavelength moves towards 443 nm or 683 nm. However, for snow-covered ice, the variation of absorption rate is little enough to present a spectral independence. In addition, the spectral distribution of the attenuation coefficient was U-shaped in the visible band, with a minimum of 1.7 m−1 at 589 nm. The integral diffuse attenuation coefficient of the first-year ice in visible band was about 2.3 m−1, which was slightly higher than 1.5 m−1, the diffuse attenuation coefficient of multi-year floe ice. The difference of the optical properties between first-year ice in the Amundsen Gulf and multi-year ice in the north of Canada Basin is mainly attributed to various components of the sea ice inclusions caused by the input of terrestrial materials with different absorption and scattering properties.
  • loading
  • [1]
    Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426
    [2]
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [3]
    Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L031972.
    [4]
    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501.
    [5]
    Haas C, Pfaffling A, Hendricks S, et al. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat[J]. Geophysical Research Letters, 2008, 35(17): L17501. doi: 10.1029/2008GL034457
    [6]
    Rothrock D A, Percival D B, Wensnahan M. The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05003.
    [7]
    Giles K A, Laxon S W, Ridout A L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum[J]. Geophysical Research Letters, 2008, 35(22): L22502. doi: 10.1029/2008GL035710
    [8]
    Rigor I G, Wallace J M. Variations in the age of Arctic sea-ice and summer sea-ice extent[J]. Geophysical Research Letters, 2004, 31(9): L09401.
    [9]
    Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501. doi: 10.1029/2007GL032043
    [10]
    Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice[J]. Geophysical Research Letters, 2007, 34(19): L19504. doi: 10.1029/2007GL031138
    [11]
    Light B, Grenfell T C, Perovich D K. Transmission and absorption of solar radiation by Arctic sea ice during the melt season[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03023.
    [12]
    Grenfell T C, Maykut G A. The optical properties of ice and snow in the Arctic Basin[J]. Journal of Glaciology, 1977, 18(80): 445−463. doi: 10.1017/S0022143000021122
    [13]
    Perovich D K. Seasonal changes in sea ice optical properties during fall freeze-up[J]. Cold Regions Science and Technology, 1991, 19(3): 261−273. doi: 10.1016/0165-232X(91)90041-E
    [14]
    Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): L08501.
    [15]
    Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): 8044. doi: 10.1029/2000JC000438
    [16]
    Webster M A, Rigor I G, Perovich D K, et al. Seasonal evolution of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 5968−5982. doi: 10.1002/2015JC011030
    [17]
    Peng Haitao, Ke Changqing, Shen Xiaoyi, et al. Summer albedo variations in the Arctic sea ice region from 1982 to 2015[J]. International Journal of Climatology, 2020, 40(6): 3008−3020. doi: 10.1002/joc.6379
    [18]
    Perovich D K. On the aggregate-scale partitioning of solar radiation in Arctic sea ice during the SHEBA field experiment[J]. Alimentary Pharmacology and Therapeutics, 2014, 40(4): 392−402. doi: 10.1111/apt.12842
    [19]
    Wang Caixin, Granskog M A, Sebastian G, et al. Autonomous observations of solar energy partitioning in first-year sea ice in the Arctic Basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2066−2080. doi: 10.1002/2013JC009459
    [20]
    赵进平, 李涛. 极低太阳高度条件下穿透海冰的太阳辐射研究[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 822−828.

    Zhao Jinping, Li Tao. The solar radiation penetrating sea ice with very low solar altitude[J]. Periodical of Ocean University of China, 2009, 39(5): 822−828.
    [21]
    Light B, Perovich D K, Webster M A, et al. Optical properties of melting first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7657−7675. doi: 10.1002/2015JC011163
    [22]
    Nicolaus M, Katlein C, Maslanik J, et al. Changes in Arctic sea ice result in increasing light transmittance and absorption[J]. Geophysical Research Letters, 2012, 39(24): L24501.
    [23]
    Katlein C, Arndt S, Nicolaus M, et al. Influence of ice thickness and surface properties on light transmission through Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 5932−5944. doi: 10.1002/2015JC010914
    [24]
    Untersteiner N. On the mass and heat budget of Arctic sea ice[J]. Archiv Für Meteorologie, Geophysik Und Bioklimatologie, Serie A, 1961, 12(2): 151−182.
    [25]
    Thomas C W. On the transfer of visible radiation through sea ice and snow[J]. Journal of Glaciology, 1963, 4(34): 481−484. doi: 10.1017/S0022143000027921
    [26]
    Katlein C, Valcic L, Lambert-Girard S, et al. New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements[J]. The Cryosphere, 2021, 15(1): 183−198. doi: 10.5194/tc-15-183-2021
    [27]
    Perovich D K, Grenfell T C. Laboratory studies of the optical properties of young sea ice[J]. Journal of Glaciology, 1981, 27(96): 331−346. doi: 10.1017/S0022143000015410
    [28]
    曲平, 赵进平, 李淑江, 等. 渤海海冰中太阳辐射的光谱特征观测研究[J]. 海洋学报, 2009, 31(1): 37−43.

    Qu Ping, Zhao Jinping, Li Shujiang, et al. Spectral features of solar radiation in sea ice of Bohai Sea[J]. Haiyang Xuebao, 2009, 31(1): 37−43.
    [29]
    Gilbert G D, Buntzen R R. In-situ measurements of the optical properties of Arctic sea ice[C]//Proceedings of SPIE 0637, Ocean Optics VIII. Orlando, USA: SPIE, 1986: 252−263.
    [30]
    Lei Ruibo, Leppäranta M, Erm A, et al. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009[J]. Estonian Journal of Earth Sciences, 2011, 60(1): 50−64. doi: 10.3176/earth.2011.1.05
    [31]
    Katlein C, Arndt S, Belter H J, et al. Seasonal evolution of light transmission distributions through Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5418−5435. doi: 10.1029/2018JC014833
    [32]
    Warren S G. Optical properties of ice and snow[J]. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2019, 377(2146): 20180161. doi: 10.1098/rsta.2018.0161
    [33]
    Pounder E R, Little E M. Some physical properties of sea ice. I[J]. Canadian Journal of Physics, 2011, 37(4): 443−473.
    [34]
    王庆凯. 北极航道融冰期海冰物理和力学工程参数研究[D]. 大连: 大连理工大学, 2019.

    Wang Qingkai. Study on the physical and mechanical engineering parameters of sea ice during melt season for Arctic Passage[D]. Dalian: Dalian University of Technology, 2019.
    [35]
    Cao Xiaowei, Lu Peng, Lei Ruibo, et al. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25−37. doi: 10.1007/s13131-020-1645-6
    [36]
    Rachold V, Eicken H, Gordeev V V, et al. Modern terrigenous organic carbon input to the Arctic Ocean[C]//The Organic Carbon Cycle in the Arctic Ocean. Berlin, Heidelberg: Springer, 2004: 33−35.
    [37]
    Corlett W B, Pickart R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153: 50−65.
    [38]
    赵进平, 李涛, 李淑江, 等. 北极海冰人造光源实验的光场结构和实验方案优化[J]. 极地研究, 2008, 20(3): 287−298.

    Zhao Jinping, Li Tao, Li Shujiang, et al. Radiation of lamp and optimized experiment using artificial light in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2008, 20(3): 287−298.
    [39]
    Perovich D K. The optical properties of sea ice[R/OL]. [2021−02−01]. http://hdl.handle.net/11681/2648.
    [40]
    Mueller J L. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols[M]. Greenbelt, Maryland: Goddard Space Flight Center, 2003.
    [41]
    Perovich D K, Gow A J. A quantitative description of sea ice inclusions[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18327−18343. doi: 10.1029/96JC01688
    [42]
    Timco G W, Frederking R M W. A review of sea ice density[J]. Cold Regions Science and Technology, 1996, 24(1): 1−6. doi: 10.1016/0165-232X(95)00007-X
    [43]
    Sanderson B G, Redden A M, Broome J E. Sediment-laden ice measurements and observations, and implications for potential interactions of ice and large woody debris with tidal turbines in Minas Passage[R]. Wolfville, NS, Canada: Publication No. 109 of the Acadia Centre for Estuarine Research, 2012.
    [44]
    Smedsrud L H. A model for entrainment of sediment into sea ice by aggregation between frazil-ice crystals and sediment grains[J]. Journal of Glaciology, 2002, 48(160): 51−61. doi: 10.3189/172756502781831520
    [45]
    周虹丽, 朱建华, 李铜基. 中国近海黄色物质吸收光谱经验斜率特征研究[J]. 热带海洋学报, 2015, 34(1): 23−29. doi: 10.3969/j.issn.1009-5470.2015.01.004

    Zhou Hongli, Zhu Jianhua, Li Tongji. Spectral properties of colored dissolved organic matter in Chinese offshore waters[J]. Journal of Tropical Oceanography, 2015, 34(1): 23−29. doi: 10.3969/j.issn.1009-5470.2015.01.004
    [46]
    Tiwari S P, Shanmugam P. An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 396−402. doi: 10.1016/j.ecss.2011.05.010
    [47]
    Simpson K, Tremblay J, Gratton Y, et al. An annual study of inorganic and organic nitrogen and phosphorus and silicic acid in the southeastern Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2008(113): C07016.
    [48]
    Arrigo K R, van Dijken G L. Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic[J]. Geophysical Research Letters, 2004, 31(8): L08304.
    [49]
    Magen C, Chaillou G, Crowe S A, et al. Origin and fate of particulate organic matter in the southern Beaufort Sea–Amundsen Gulf region, Canadian Arctic[J]. Estuarine, Coastal and Shelf Science, 2010, 86(1): 31−41. doi: 10.1016/j.ecss.2009.09.009
    [50]
    Thomas D N, Dieckmann G S. Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology[M]. Oxford, UK: Blackwell Science Ltd, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (338) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return