Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Xie Long,Bai Xuezhi,Long Shangmin. Assessment of the ability of CMIP6 models to simulate the heat content of the Arctic Ocean[J]. Haiyang Xuebao,2021, 43(7):35–51 doi: 10.12284/hyxb2021147
Citation: Xie Long,Bai Xuezhi,Long Shangmin. Assessment of the ability of CMIP6 models to simulate the heat content of the Arctic Ocean[J]. Haiyang Xuebao,2021, 43(7):35–51 doi: 10.12284/hyxb2021147

Assessment of the ability of CMIP6 models to simulate the heat content of the Arctic Ocean

doi: 10.12284/hyxb2021147
  • Received Date: 2020-12-31
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-06-22
  • Publish Date: 2021-07-25
  • The PHC, ECCO2, SODA, GECCO3 and CMIP6 data were used to analyze the horizontal distribution characteristics, seasonal variation and long-term trend of the Arctic Ocean heat content, and analyze the simulation ability of the CMIP6 models in this paper. The results show that the heat content of the Arctic Ocean shows obvious seasonal change, with the lowest in April and the highest in September. Under historical circumstances (1850−2014), compared with the observation and reanalysis data, the heat content of the upper 500 m of the CMIP6 models ensemble average (MME) is warmer in the Greenland Sea, colder in the Norwegian sea, Barents Sea and Eurasian Basin, while the whole water column heat content of MME is warmer in almost all regions of the Arctic Ocean, with the largest deviation in the Greenland Sea. CMIP6 models have a large deviation in the simulation of Arctic Ocean temperature profile, and the average temperature of MME is higher than the observation and reanalysis data at the depth of more than 1 000 m. In the future case (2015−2100), the simulation of ocean heat content of MME shows obvious Arctic Ocean warming, but most of the Chinese models show no obvious warming situation. BCC-CSM2-MR and BCC-ESM1 are poor in simulating the annual mean heat content of the Arctic Ocean, CIESM is poor in simulating the seasonal and interdecadal variations of ocean heat content, while FIO-ESM-2-0 is good in simulating the annual heat content of the upper 500 m, the seasonal and interdecadal variations of heat content of the Arctic Ocean.
  • loading
  • [1]
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334−1337. doi: 10.1038/nature09051
    [2]
    Comiso J C. A rapidly declining perennial sea ice cover in the Arctic[J]. Geophysical Research Letters, 2002, 29(20): 17. doi: 10.1029/2002GL015650
    [3]
    Meier W N, Stroeve J, Fetterer F. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record[J]. Annals of Glaciology, 2007, 46: 428−434. doi: 10.3189/172756407782871170
    [4]
    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501.
    [5]
    Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703.
    [6]
    Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501. doi: 10.1029/2007GL032043
    [7]
    Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07005.
    [8]
    Meier W, Stroeve J, Fetterer F, et al. Reductions in Arctic sea ice cover no longer limited to summer[J]. Eos, Transactions American Geophysical Union, 2005, 86(36): 326.
    [9]
    Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophysical Research Letters, 2006, 33(23): L23503. doi: 10.1029/2006GL028024
    [10]
    Kumar A, Perlwitz J, Eischeid J, et al. Contribution of sea ice loss to Arctic amplification[J]. Geophysical Research Letters, 2010, 37(21): L21701.
    [11]
    Perovich D K, Light B, Eicken H, et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback[J]. Geophysical Research Letters, 2007, 34(19): L19505. doi: 10.1029/2007GL031480
    [12]
    Serreze M C, Barrett A P, Slater A G, et al. The large-scale energy budget of the Arctic[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11): D11122. doi: 10.1029/2006JD008230
    [13]
    Timmermans M L, Toole J, Krishfield R. Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins[J]. Science Advances, 2018, 4(8): eaat6773. doi: 10.1126/sciadv.aat6773
    [14]
    M. S. M, Thompson B. Decadal variability of the Arctic Ocean thermal structure[J]. Ocean Dynamics, 2011, 61(7): 873−880. doi: 10.1007/s10236-011-0386-7
    [15]
    Lique C, Steele M. Seasonal to decadal variability of Arctic Ocean heat content: A model-based analysis and implications for autonomous observing systems[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1673−1695. doi: 10.1002/jgrc.20127
    [16]
    Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1
    [17]
    邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042

    Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Seas[J]. Advances in Earth Science, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042
    [18]
    Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the Southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 Expedition[J]. Geophysical Research Letters, 1995, 22(9): 1061−1064. doi: 10.1029/95GL00808
    [19]
    McLaughlin F, Carmack E, Macdonald R, et al. The Canada Basin, 1989−1995: Upstream events and far-field effects of the Barents Sea[J]. Journal of Geophysical Research: Oceans, 2002, 107(C7): 19-1−19-20.
    [20]
    Rudels B, Friedrich H J, Quadfasel D. The Arctic circumpolar boundary current[J]. Deep–Sea Research Part II: Topical Studies in Oceanography, 1999, 46(6/7): 1023−1062.
    [21]
    Pickard, George L. Descriptive physical oceanography: An introduction[J]. Deep Sea Research & Oceanographic Abstracts, 2005, 23(6): 557−557.
    [22]
    Pnyushkov A V, Polyakov I V, Ivanov V V, et al. Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean[J]. Deep–Sea Research Part I: Oceanographic Research Papers, 2015, 101: 80−97. doi: 10.1016/j.dsr.2015.03.001
    [23]
    Dmitrenko I A, Rudels B, Kirillov S A, et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(7): 5158−5178. doi: 10.1002/2015JC010804
    [24]
    Dmitrenko I A, Polyakov I V, Kirillov S A, et al. Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05023.
    [25]
    Polyakov I V, Pnyushkov A V, Alkire M B, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean[J]. Science, 2017, 356(6335): 285−291. doi: 10.1126/science.aai8204
    [26]
    Carmack E, Polyakov I, Padman L, et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2079−2105. doi: 10.1175/BAMS-D-13-00177.1
    [27]
    Polyakov I V, Timokhov L A, Alexeev V A, et al. Arctic Ocean warming contributes to reduced polar ice cap[J]. Journal of Physical Oceanography, 2010, 40(12): 2743−2756. doi: 10.1175/2010JPO4339.1
    [28]
    牟龙江, 赵进平. 北极冰海耦合模式对两种不同大气再分析资料响应的分析[J]. 海洋学报, 2015, 37(11): 79−91.

    Mu Longjiang, Zhao Jinping. Analysis on the response of an Arctic ice-ocean coupled model to two different atmospheric reanalysis datasets[J]. Haiyang Xuebao, 2015, 37(11): 79−91.
    [29]
    杨清华, 刘骥平, 张占海, 等. 北极海冰数值预报的初步研究——基于海冰–海洋耦合模式MITgcm的模拟试验[J]. 大气科学, 2011, 35(3): 473−482. doi: 10.3878/j.issn.1006-9895.2011.03.08

    Yang Qinghua, Liu Jiping, Zhang Zhanhai, et al. A preliminary study of the Arctic sea ice numerical forecasting: Coupled sea ice-ocean modelling experiments based on MITgcm[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3): 473−482. doi: 10.3878/j.issn.1006-9895.2011.03.08
    [30]
    周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
    [31]
    李晓婷, 郑沛楠, 王建丰, 等. 常用海洋数据资料简介[J]. 海洋预报, 2010, 27(5): 81−89. doi: 10.3969/j.issn.1003-0239.2010.05.014

    Li Xiaoting, Zheng Peinan, Wang Jianfeng, et al. Introduction of the ocean data in common use[J]. Marine Forecasts, 2010, 27(5): 81−89. doi: 10.3969/j.issn.1003-0239.2010.05.014
    [32]
    Marotzke J, Giering R, Zhang K Q, et al. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 29529−29547. doi: 10.1029/1999JC900236
    [33]
    Swift J H, Aagaard K. Seasonal transitions and water mass formation in the Iceland and Greenland seas[J]. Deep–Sea Research Part A. Oceanographic Research Papers, 1981, 28(10): 1107−1129. doi: 10.1016/0198-0149(81)90050-9
    [34]
    Hansen B, Østerhus S. North Atlantic–Nordic Seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109−208. doi: 10.1016/S0079-6611(99)00052-X
    [35]
    Rossby T, Prater M D, Søiland H. Pathways of inflow and dispersion of warm waters in the Nordic seas[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04011.
    [36]
    何琰, 赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079−1091.

    He Yan, Zhao Jinping. Distributions and seasonal variations of fronts in GIN seas[J]. Advances in Earth Science, 2011, 26(10): 1079−1091.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views (435) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return