Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Hu Yuanye,Wang Shoujun,Chen Songgui, et al. Overtopping prediction for composite slope breakwater based on random forest method[J]. Haiyang Xuebao,2021, 43(10):106–114 doi: 10.12284/hyxb2021133
Citation: Hu Yuanye,Wang Shoujun,Chen Songgui, et al. Overtopping prediction for composite slope breakwater based on random forest method[J]. Haiyang Xuebao,2021, 43(10):106–114 doi: 10.12284/hyxb2021133

Overtopping prediction for composite slope breakwater based on random forest method

doi: 10.12284/hyxb2021133
  • Received Date: 2020-06-27
  • Rev Recd Date: 2021-04-09
  • Available Online: 2021-07-13
  • Publish Date: 2021-10-30
  • Aiming at the problem of calculating overtopping of the composite slope breakwater, a prediction model of the overtopping for the composite slope based on the random forest method is proposed. Firstly, by filtering the European CLASH data set, the data consistent with the prediction of overtopping of the composite slope breakwater are selected. Secondly, after dimensionless processing of the data, overtopping prediction model is established based on random forest method, and improved by adjusting the model parameters according to GridSearchCV. Finally, the coefficient of determination R2 is used to evaluate the accuracy of the model, and the prediction ability of the model is compared with the ensemble neural network model. The effect of each feature parameter of the random forest model on the prediction accuracy is assessed. The results show that the coefficient of determination of the random forest model is 92.7%, and the coefficient of determination of the ensemble neural network model is 87.7%, indicating the random forest model has a stronger prediction ability for predicting overtopping. Wall height with respect to static water level has the greatest influence on the prediction accuracy of the model, the height of the top of the embankment is the second, and the width of the foot of the embankment least.
  • loading
  • [1]
    王红, 周家宝, 章家昌. 单坡堤上不规则波越浪量的估算[J]. 水利水运科学研究, 1996(1): 58−63.

    Wang Hong, Zhou Jiabao, Zhang Jiachang. Estimating of irregular wave overtopping quantities on single sloping[J]. Journal of Nanjing Hydraulic Research Institute, 1996(1): 58−63.
    [2]
    中华人民共和国交通运输部. JTS 145−2015, 港口与航道水文规范[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of China. JTS 145−2015, Code of Hydrology for Harbour and Waterway[S]. Beijing: China Communications Press, 2015.
    [3]
    范红霞. 斜坡式海堤越浪量及越浪流试验研究[D]. 南京: 河海大学, 2006.

    Fan Hongxia. Expermental study on the overtopping discharge and overtopping flow of the sloped[D]. Nanjing: Hohai University, 2006.
    [4]
    陈国平, 周益人, 严士常. 不规则波作用下海堤越浪量试验研究[J]. 水运工程, 2010(3): 1−6. doi: 10.3969/j.issn.1002-4972.2010.03.001

    Chen Guoping, Zhou Yiren, Yan Shichang. Test study on wave overtopping under irregular wave action[J]. Port & Waterway Engineering, 2010(3): 1−6. doi: 10.3969/j.issn.1002-4972.2010.03.001
    [5]
    陈松贵, 王泽明, 张弛, 等. 珊瑚礁地形上直立式防浪堤越浪大水槽实验[J]. 科学通报, 2019, 64(28/29): 3049−3058.

    Chen Songgui, Wang Zeming, Zhang Chi, et al. Experiment on wave overtopping of a vertical seawall on coral reefs in large wave flume[J]. Chinese Science Bulletin, 2019, 64(28/29): 3049−3058.
    [6]
    Liu Ye, Li Shaowu, Chen Songgui, et al. Random wave overtopping of vertical seawalls on coral reefs[J]. Applied Ocean Research, 2020, 100: 102166. doi: 10.1016/j.apor.2020.102166
    [7]
    Owen M W. Design of seawalls allowing for wave overtopping[R]. Wallingford: Hydraulics Research Station,1980.
    [8]
    Allsop N W H, Bruce T, de Rouck J, et al. EurOtop II manual on wave overtopping of sea defences and related structures[R]. Deflt: Technical Adcisory Committee on Flood Defence, 2016.
    [9]
    Ward D L, Ahrens J P. Overtopping rates for seawalls[R]. Coastal Engineering Research Center Vicksburg MS, 1992.
    [10]
    舒叶华, 徐宇航, 谢先坤. 复式海堤结构越浪量计算方法比较[J]. 水运工程, 2019(5): 27−31. doi: 10.3969/j.issn.1002-4972.2019.05.005

    Shu Yehua, Xu Yuhang, Xie Xiankun. Comparison of calculation methods for overtopping discharge of composite seawall structure[J]. Port & Waterway Engineering, 2019(5): 27−31. doi: 10.3969/j.issn.1002-4972.2019.05.005
    [11]
    Oliveira T C A, Sánchez-Arcilla A, Gironella X. Simulation of wave overtopping of maritime structures in a numerical wave flume[J]. Journal of Applied Mathematics, 2012, 2012: 246146.
    [12]
    关大玮. 规则波与不规则波的海堤越浪数值模拟[D]. 广州: 华南理工大学, 2016.

    Guan Dawei. Numerical simulation of regular and irregular wave overtopping against seawalls[D]. Guangzhou: South China University of Technology, 2016.
    [13]
    董志, 关大玮, 苗青, 等. 复式海堤上规则波和不规则波越浪数值模拟研究[J]. 中国农村水利水电, 2020(3): 112−118. doi: 10.3969/j.issn.1007-2284.2020.03.022

    Dong Zhi, Guan Dawei, Miao Qing, et al. Numerical simulation of regular and irregular waves overtopping on composite section sea-dike[J]. China Rural Water and Hydropower, 2020(3): 112−118. doi: 10.3969/j.issn.1007-2284.2020.03.022
    [14]
    van Gent M R A, van den Boogaard H F P, Pozueta B, et al. Neural network modelling of wave overtopping at coastal structures[J]. Coastal Engineering, 2007, 54(8): 586−593. doi: 10.1016/j.coastaleng.2006.12.001
    [15]
    Formentin S M, Zanuttigh B, van der Meer J W. A neural network tool for predicting wave reflection, overtopping and transmission[J]. Coastal Engineering Journal, 2017, 59(1): 1750006.
    [16]
    刘诗学, 王收军, 陈松贵, 等. 基于人工智能的单坡式防波堤越浪量评估方法研究与应用[J]. 水道港口, 2019, 40(5): 541−546, 587. doi: 10.3969/j.issn.1005-8443.2019.05.008

    Liu Shixue, Wang Shoujun, Chen Songgui, et al. Research and application of artificial intelligence based method for overtopping assessment of straight slopes[J]. Journal of Waterway and Harbor, 2019, 40(5): 541−546, 587. doi: 10.3969/j.issn.1005-8443.2019.05.008
    [17]
    Liu Ye, Li Shaowu, Zhao Xin, et al. Artificial neural network prediction of overtopping rate for impermeable vertical seawalls on coral reefs[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2020, 146(4): 04020015. doi: 10.1061/(ASCE)WW.1943-5460.0000575
    [18]
    孙明喆, 毕瑶家, 孙驰. 改进随机森林算法综述[J]. 现代信息科技, 2019, 3(20): 28−30. doi: 10.3969/j.issn.2096-4706.2019.20.009

    Sun Mingzhe, Bi Yaojia, Sun Chi. A survey of improved random forest algorithms[J]. Modern Informationn Technology, 2019, 3(20): 28−30. doi: 10.3969/j.issn.2096-4706.2019.20.009
    [19]
    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.

    Li Hang. Statistical Learning Methods[M]. Beijing: Tsinghua University Press, 2012.
    [20]
    贾怀勤. 应用统计[M]. 北京: 外经济贸易大学出版社, 1998.

    Jia Huaiqin. Applied Statistics[M]. Beijing: University of International Business and Economics Press, 1998.
    [21]
    林子聪, 任向宁, 朱阿兴, 等. 基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报, 2020, 41(4): 38−48. doi: 10.7671/j.issn.1001-411X.201909036

    Lin Zicong, Ren Xiangning, Zhu Axing, et al. Research on the index system of cultivated land quality grading based on random forest algorithm[J]. Journal of South China Agricultural University, 2020, 41(4): 38−48. doi: 10.7671/j.issn.1001-411X.201909036
    [22]
    陈国平, 余广明, 章家昌. 平台高程与宽度对不规则波爬高的影响[J]. 海洋工程, 1992, 10(4): 59−67.

    Chen Guoping, Yu Guangming, Zhang Jiachang. The effect of berm width and elevation on irregular wave run-up[J]. The Ocean Engineering, 1992, 10(4): 59−67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (356) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return