Citation: | Jia Binhe,Li Wei,Liang Kangzhuang. Research on the optimization method of analytical four dimensional ensemble variational data assimilation[J]. Haiyang Xuebao,2021, 43(10):61–69 doi: 10.12284/hyxb2021129 |
[1] |
魏敏. 四维变分方法在微分方程参数优化中的应用[D]. 南京: 南京师范大学, 2013.
Wei Min. Applications of the four-dimensional variation methods on parameter optimization of differential equations[D]. Nanjing: Nanjing Normal University, 2013.
|
[2] |
Lewis J M, Derber J C. The use of adjoint equations to solve a variational adjustment problem with advective constraints[J]. Tellus A: Dynamic Meteorology and Oceanography, 1985, 37(4): 309−322. doi: 10.3402/tellusa.v37i4.11675
|
[3] |
Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus A: Dynamic Meteorology and Oceanography, 1986, 38(2): 97−110. doi: 10.3402/tellusa.v38i2.11706
|
[4] |
Chu Kekuan, Tan Zhemin, Ming Xue. Impact of 4DVAR assimilation of rainfall data on the simulation of mesoscale precipitation systems in a Mei-Yu heavy rainfall event[J]. Advances in Atmospheric Sciences, 2007, 24(2): 281−300. doi: 10.1007/s00376-007-0281-9
|
[5] |
Zhao Juan, Wang Bin, Liu Juanjuan. Impact of analysis-time tuning on the performance of the DRP-4DVar approach[J]. Advances in Atmospheric Sciences, 2011, 28(1): 207−216. doi: 10.1007/s00376-010-9191-3
|
[6] |
Wang Yunfeng, Wang Bin, Fei Jianfang, et al. The effects of assimilating satellite brightness temperature and bogus data on the simulation of typhoon Kalmaegi (2008)[J]. Acta Meteorologica Sinica, 2013, 27(3): 415−434. doi: 10.1007/s13351-013-0309-2
|
[7] |
Zhong Jian, Huang Sixun, Fei Jianfang, et al. Application of tikhonov regularization method to wind retrieval from scatterometer data II: Cyclone wind retrieval with consideration of rain[J]. Chinese Physics B, 2011, 20(6): 064301. doi: 10.1088/1674-1056/20/6/064301
|
[8] |
Inazu D, Higuchi T, Nakamura K. Optimization of boundary condition and physical parameter in an ocean tide model using an evolutionary algorithm[J]. Theoretical and Applied Mechanics Japan, 2010, 58: 101−112.
|
[9] |
Wang Tingting, Li Wenlong, Chen Zhanghui, et al. Correcting the systematic error of the density functional theory calculation: The alternate combination approach of genetic algorithm and neural network[J]. Chinese Physics B, 2010, 19(7): 076401. doi: 10.1088/1674-1056/19/7/076401
|
[10] |
王云峰, 顾成明, 张晓辉, 等. 优化模式物理参数的扩展四维变分同化方法[J]. 物理学报, 2014, 63(24): 12−19.
Wang Yunfeng, Gu Chengming, Zhang Xiaohui, et al. Expanded four-dimensional variatiaonal data assimilation method to optimize model physical parameters[J]. Acta Physica Sinica, 2014, 63(24): 12−19.
|
[11] |
Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test[J]. Monthly Weather Review, 2008, 136(9): 3363−3373. doi: 10.1175/2008MWR2312.1
|
[12] |
Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with advanced research WRF (ARW)[J]. Monthly Weather Review, 2009, 137(5): 1687−1704. doi: 10.1175/2008MWR2699.1
|
[13] |
Liu Chengsi, Xiao Qingnong. An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data[J]. Monthly Weather Review, 2013, 141(8): 2721−2739. doi: 10.1175/MWR-D-12-00130.1
|
[14] |
Arbogast É, Desroziers G, Berre L. A parallel implementation of a 4DEnVar ensemble[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(706): 2073−2083. doi: 10.1002/qj.3061
|
[15] |
Yang Yin, Mémin E. High-resolution data assimilation through stochastic subgrid tensor and parameter estimation from 4DEnVar[J]. Tellus A: Dynamic Meteorology and Oceanography, 2017, 69(1): 1308772. doi: 10.1080/16000870.2017.1308772
|
[16] |
Song H J, Kang J H. Effects of the wind-mass balance constraint on ensemble forecasts in the hybrid-4DEnVar[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(719): 434−449. doi: 10.1002/qj.3440
|
[17] |
杨雨轩. 基于华南冬季暴雨的雷达资料四维集合变分同化技术研究[D]. 长沙: 国防科技大学, 2017.
Yang Yuxuan. Technical research of four-dimensional ensemble variational assimilation of doppler radar data based on awinter heavy rainstorm in south China[D]. Changsha: National University of Defense Technology, 2017.
|
[18] |
Lee K S, Bang S H, Chang K S. Feedback-assisted iterative learning control based on an inverse process model[J]. Journal of Process Control, 1994, 4(2): 77−89. doi: 10.1016/0959-1524(94)80026-X
|
[19] |
杜川利, 黄向宇, 俞小鼎. 变分同化方法在Lorenz系统中的简单应用研究[J]. 气象, 2005, 31(2): 23−26. doi: 10.7519/j.issn.1000-0526.2005.02.005
Du Chuanli, Huang Xiangyu, Yu Xiaoding. Simple application of variational four-dimensional assimilation in Lorenz system[J]. Meteorological Monthly, 2005, 31(2): 23−26. doi: 10.7519/j.issn.1000-0526.2005.02.005
|
[20] |
Hall M C G. Application of adjoint sensitivity theory to an atmospheric general circulation model[J]. Journal of the Atmospheric Sciences, 1986, 43(22): 2644−2652. doi: 10.1175/1520-0469(1986)043<2644:AOASTT>2.0.CO;2
|
[21] |
李建平, 丑纪范. 非线性大气动力学的进展[J]. 大气科学, 2003, 27(4): 653−673. doi: 10.3878/j.issn.1006-9895.2003.04.15
Li Jianping, Chou Jifan. Advances in nonlinear atmospheric dynamics[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 653−673. doi: 10.3878/j.issn.1006-9895.2003.04.15
|
[22] |
郜吉东, 丑纪范. 数值模式初值的敏感性程度对四维同化的影响——基于Lorenz系统的研究[J]. 气象学报, 1995, 53(4): 471−479.
Gao Jidong, Chou Jifan. The effects of the model sensitivity to initial condition upon the variational four-diensional assimilation−the study based on Lorenz model[J]. Acta Meteorologica Sinica, 1995, 53(4): 471−479.
|