Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Qiu Zishan,Xu Tengfei,Wei Zexun, et al. Projectied longterm trend of the Southeast Indian subantarctic mode water under climate change scenarios[J]. Haiyang Xuebao,2021, 43(11):1–21 doi: 10.12284/hyxb2021127
Citation: Qiu Zishan,Xu Tengfei,Wei Zexun, et al. Projectied longterm trend of the Southeast Indian subantarctic mode water under climate change scenarios[J]. Haiyang Xuebao,2021, 43(11):1–21 doi: 10.12284/hyxb2021127

Projectied longterm trend of the Southeast Indian subantarctic mode water under climate change scenarios

doi: 10.12284/hyxb2021127
  • Received Date: 2020-12-04
  • Rev Recd Date: 2021-01-26
  • Available Online: 2021-08-12
  • Publish Date: 2021-12-31
  • Based on the outputs of eight earth system models involved in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study assessed the simulation skill of the Southeast Indian subantarctic mode water (SEISAMW) of these models by comparing with observations. Moreover, this study investigated the projected long-term trends in subduction rate, volume and properties of the SEISAMW under medium and high greenhouse gas emission scenarios (i.e., SSP245, SSP585). The results show that the CMIP6 models generally have produced artificially greater mixed layer depth and smaller upper layer potential density in comparison with those of the Argo observation. Consequently, the simulated SEISAMW in the CMIP6 models are generally with larger subduction rate and smaller potential density. Meanwhile, the subduction regions of the SEISAMWs show significant differences among the analyzed CMIP6 models, which are attribute to lateral induction in the mixed layer. Furthermore, in the historical, SSP245 and SSP585 outputs, the SEISAMWs show consistent decreasing trends in subduction rate and volume, increasing trend in temperature, and decreasing trends in salinity and potential density. The long-term trends of the SEISAMWs are largest under SSP585 scenario, followed by the SSP245 scenario and historical simulation. The projected trends of SEISAMW can be explained by the following mechanism: the temperature and freshwater flux in the southeastern Indian Ocean upper layer tend to increase under enhanced radioactive forcing, resulting in shoaling in mixed layer and flattening of the mixed layer gradient. As a result, the trends of SEISAMWs in subduction rate, volume and water properties show larger values in accordance with stronger radioactive forcing.
  • loading
  • [1]
    Hanawa K, Talley L D. Modes Waters BT-Ocean Circulation and Climate[M]//Gerold S, John C, Gould J. Ocean Circulation and Climate. New York: Academic Press, 2001, 77: 373−386.
    [2]
    Stommel H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(7): 3051−3055. doi: 10.1073/pnas.76.7.3051
    [3]
    Woods J D. The physics of thermocline ventilation[J]. Elsevier Oceanography Series, 1985, 40: 543−590.
    [4]
    Sloyan B M, Rintoul S R. Circulation, renewal, and modification of Antarctic mode and intermediate water[J]. Journal of Physical Oceanography, 1999, 31(4): 1005−1030.
    [5]
    胡海波, 刘秦玉, 刘伟. 北太平洋副热带模态水形成区潜沉率的年际变化及其机制[J]. 海洋学报, 2006, 28(2): 22−28.

    Hu Haibo, Liu Qinyu, Liu Wei. Interannual and decadal variation of the subduction rate in the subtropical mode water formation regions in the North Pacific[J]. Haiyang Xuebao, 2006, 28(2): 22−28.
    [6]
    潘爱军, 万小芳, 刘秦玉. 北太平洋副热带模态水形成区混合层热动力过程诊断分析[J]. 热带海洋学报, 2011, 30(5): 8−18. doi: 10.3969/j.issn.1009-5470.2011.05.002

    Pan Aijun, Wan Xiaofang, Liu Qinyu. Diagnostics of mixed-layer thermodynamics in the formation regime of the North Pacific subtropical mode water[J]. Journal of Tropical Oceanography, 2011, 30(5): 8−18. doi: 10.3969/j.issn.1009-5470.2011.05.002
    [7]
    Holte J W, Talley L D, Chereskin T K, et al. The role of air-sea fluxes in Subantarctic mode water formation[J]. Journal of Geophysical Research: Oceans, 2012, 117(C3): C03040.
    [8]
    李祥, 罗义勇. 太平洋副热带东部模态水的年际变化及机制研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(2): 1−13.

    Li Xiang, Luo Yiyong. Inter-annual variations of the eastern subtropical mode waters in the Pacific Ocean and their formation mechanisms[J]. Periodical of Ocean University of China, 2019, 49(2): 1−13.
    [9]
    Tamsitt V, Cerovečki I, Josey S A, et al. Mooring observations of air-sea heat fluxes in two subantarctic mode water formation regions[J]. Journal of Climate, 2020, 33(7): 2757−2777. doi: 10.1175/JCLI-D-19-0653.1
    [10]
    Rintoul S R, England M H. Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water[J]. Journal of Physical Oceanography, 2002, 32(5): 1308−1321. doi: 10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2
    [11]
    刘秦玉, 胡海波, 刘海龙, 等. 北太平洋副热带潜沉率及其变化中海面风的作用[J]. 海洋与湖沼, 2006, 37(2): 184−192. doi: 10.3321/j.issn:0029-814X.2006.02.013

    Liu Qinyu, Hu Haibo, Liu Hailong, et al. The role of sea surface wind in “subduction” rate variation in north Pacific[J]. Oceanologia et Limnologia Sinica, 2006, 37(2): 184−192. doi: 10.3321/j.issn:0029-814X.2006.02.013
    [12]
    Sallée J B, Speer K, Rintoul S, et al. Southern ocean thermocline ventilation[J]. Journal of Physical Oceanography, 2010, 40(3): 509−529. doi: 10.1175/2009JPO4291.1
    [13]
    Qu Tangdong, Xie Shangping, Mitsudera H, et al. Subduction of the North Pacific mode waters in a global high-resolution GCM[J]. Journal of Physical Oceanography, 2002, 32(3): 746−763. doi: 10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2
    [14]
    潘爱军, 刘秦玉. 北太平洋副热带西部模态水形成区海洋涡旋对冬季垂直混合过程的影响[J]. 科学通报, 2005, 50(17): 1949−1956. doi: 10.1360/982004-757

    Pan Aijun, Liu Qinyu. Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific Subtropical Mode Water[J]. Chinese Science Bulletin, 2005, 50(17): 1949−1956. doi: 10.1360/982004-757
    [15]
    Sallée J B, Morrow R, Speer K. Eddy heat diffusion and Subantarctic mode water formation[J]. Geophysical Research Letters, 2008, 35(5): L05607.
    [16]
    Herraiz-Borreguero L, Rintoul S R. Subantarctic mode water variability influenced by mesoscale eddies south of Tasmania[J]. Journal of Geophysical Research: Oceans, 2010, 115(C4): C04004.
    [17]
    Gao Shan, Qu Tangdong, Fukumori I. Effects of mixing on the subduction of South Pacific waters identified by a simulated passive tracer and its adjoint[J]. Dynamics of Atmospheres and Oceans, 2011, 51(1/2): 45−54.
    [18]
    Cerovečki I, Talley L D, Mazloff M R, et al. Subantarctic mode water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate[J]. Journal of Physical Oceanography, 2013, 43(7): 1485−1511. doi: 10.1175/JPO-D-12-0121.1
    [19]
    Cerovečki I, Mazloff M R. The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean[J]. Journal of Physical Oceanography, 2016, 46(2): 683−710. doi: 10.1175/JPO-D-14-0243.1
    [20]
    Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997, 275(5301): 805−807. doi: 10.1126/science.275.5301.805
    [21]
    Wang Qi, Huang Ruixin. Decadal variability of pycnocline flows from the subtropical to the equatorial pacific[J]. Journal of Physical Oceanography, 2005, 35(10): 1861−1875. doi: 10.1175/JPO2791.1
    [22]
    Jones D C, Meijers A J S, Shuckburgh E, et al. How does Subantarctic mode water ventilate the Southern Hemisphere subtropics?[J]. Journal of Geophysical Research: Oceans, 2016, 121(9): 6558−6582. doi: 10.1002/2016JC011680
    [23]
    McCartney M S. Subantarctic Mode Water[M]//Angel M V. A Voyage of Discovery. New York: Pergamon Press, 1977: 103−119.
    [24]
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367−371. doi: 10.1126/science.1097403
    [25]
    Ito T, Woloszyn M, Mazloff M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow[J]. Nature, 2010, 463(7277): 80−83. doi: 10.1038/nature08687
    [26]
    Séférian R, Iudicone D, Bopp L, et al. Water mass analysis of effect of climate change on air-sea CO2 fluxes: the Southern Ocean[J]. Journal of Climate, 2012, 25(11): 3894−3908. doi: 10.1175/JCLI-D-11-00291.1
    [27]
    Frölicher T L, Sarmiento J L, Paynter D J, et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models[J]. Journal of Climate, 2015, 28(2): 862−886. doi: 10.1175/JCLI-D-14-00117.1
    [28]
    Iudicone D, Rodgers K B, Plancherel Y, et al. The formation of the ocean’s anthropogenic carbon reservoir[J]. Scientific Reports, 2016, 6(1): 35473. doi: 10.1038/srep35473
    [29]
    Langlais C E, Lenton A, Matear R, et al. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean[J]. Scientific Reports, 2017, 7(1): 17076. doi: 10.1038/s41598-017-17292-3
    [30]
    McCartney M S. The subtropical recirculation of mode waters[J]. Journal of Marine Research, 1982, 40(S1): 427−464.
    [31]
    Wong A P S. Subantarctic mode water and Antarctic intermediate water in the South Indian Ocean based on profiling float data 2000−2004[J]. Journal of Marine Research, 2005, 63(4): 789−812. doi: 10.1357/0022240054663196
    [32]
    Sallée J B, Wienders N, Speer K, et al. Formation of subantarctic mode water in the southeastern Indian Ocean[J]. Ocean Dynamics, 2006, 56(5/6): 525−542.
    [33]
    Koch-Larrouy A, Morrow R, Penduff T, et al. Origin and mechanism of subantarctic mode water formation and transformation in the Southern Indian Ocean[J]. Ocean Dynamics, 2010, 60(3): 563−583. doi: 10.1007/s10236-010-0276-4
    [34]
    Herraiz-Borreguero L, Rintoul S R. Subantarctic mode water: distribution and circulation[J]. Ocean Dynamics, 2011, 61(1): 103−126. doi: 10.1007/s10236-010-0352-9
    [35]
    Banks H T, Wood R A, Gregory J M, et al. Are observed decadal changes in intermediate water masses a signature of anthropogenic climate change?[J]. Geophysical Research Letters, 2000, 27(18): 2961−2964. doi: 10.1029/2000GL011601
    [36]
    Banks H, Wood R, Gregory J. Changes to Indian Ocean subantarctic mode water in a coupled climate model as CO2 forcing increases[J]. Journal of Physical Oceanography, 2002, 32(10): 2816−2827. doi: 10.1175/1520-0485(2002)032<2816:CTIOSM>2.0.CO;2
    [37]
    Hall A, Visbeck M. Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode[J]. Journal of Climate, 2002, 15(21): 3043−3057. doi: 10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2
    [38]
    Thompson D W J, Solomon S. Interpretation of recent southern hemisphere climate change[J]. Science, 2002, 296(5569): 895−899. doi: 10.1126/science.1069270
    [39]
    Li Jianping, Wang J X L. A modified zonal index and its physical sense[J]. Geophysical Research Letters, 2003, 30(12): 1632.
    [40]
    Marshall G J. Trends in the southern annular mode from observations and reanalyses[J]. Journal of Climate, 2003, 16(24): 4134−4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [41]
    郑菲, 李建平, 刘婷. 南半球环状模气候影响的若干研究进展[J]. 气象学报, 2014, 72(5): 926−939.

    Zheng Fei, Li Jianping, Liu Ting. Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode[J]. Acta Meteorologica Sinica, 2014, 72(5): 926−939.
    [42]
    Downes S M, Langlais C, Brook J P, et al. Regional impacts of the westerly winds on southern ocean mode and intermediate water subduction[J]. Journal of Physical Oceanography, 2017, 47(10): 2521−2530. doi: 10.1175/JPO-D-17-0106.1
    [43]
    Chen Xingrong, Liu Shan, Cai Yi, et al. Potential effects of subduction rate in the key ocean on global warming hiatus[J]. Acta Oceanologica Sinica, 2018, 37(3): 63−68. doi: 10.1007/s13131-017-1130-z
    [44]
    Meijers A J S, Cerovečki I, King B A, et al. A see-saw in pacific subantarctic mode water formation driven by atmospheric modes[J]. Geophysical Research Letters, 2019, 46(22): 13152−13160. doi: 10.1029/2019GL085280
    [45]
    刘成彦. 二十世纪全球海洋潜沉率和浮露率的变化趋势及其机制[D]. 青岛: 中国海洋大学, 2012.

    Liu Chengyan. Long-term changes of subduction and obduction over the global ocean and their mechanisms in the 20th century[D]. Qingdao: Ocean University of China, 2012.
    [46]
    Gao Libao, Rintoul S R, Yu Weidong. Recent wind-driven change in subantarctic mode water and its impact on ocean heat storage[J]. Nature Climate Change, 2018, 8(1): 58−63. doi: 10.1038/s41558-017-0022-8
    [47]
    Kolodziejczyk N, Llovel W, Portela E. Interannual variability of upper ocean water masses as inferred from Argo array[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 6067−6085. doi: 10.1029/2018JC014866
    [48]
    Portela E, Kolodziejczyk N, Maes C, et al. Interior water-mass variability in the southern hemisphere oceans during the last decade[J]. Journal of Physical Oceanography, 2020, 50(2): 361−381. doi: 10.1175/JPO-D-19-0128.1
    [49]
    Qu Tangdong, Gao Shan, Fine R A. Variability of the sub-Antarctic mode water subduction rate during the Argo period[J]. Geophysical Research Letters, 2020, 47(13): e2020GL088248.
    [50]
    Hong Yu, Du Yan, Qu Tangdong, et al. Variability of the subantarctic mode water volume in the South Indian Ocean during 2004−2018[J]. Geophysical Research Letters, 2020, 47(10): e2020GL087830.
    [51]
    Sloyan B M, Kamenkovich I V. Simulation of subantarctic mode and Antarctic intermediate waters in climate models[J]. Journal of Climate, 2007, 20(20): 5061−5080. doi: 10.1175/JCLI4295.1
    [52]
    Downes S M, Bindoff N L, Rintoul S R. Impacts of climate change on the subduction of mode and intermediate water masses in the southern ocean[J]. Journal of Climate, 2009, 22(12): 3289−3302. doi: 10.1175/2008JCLI2653.1
    [53]
    Downes S M, Bindoff N L, Rintoul S R. Changes in the subduction of Southern Ocean water masses at the end of the twenty-first century in eight IPCC models[J]. Journal of Climate, 2010, 23(24): 6526−6541. doi: 10.1175/2010JCLI3620.1
    [54]
    Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1845−1862. doi: 10.1002/jgrc.20157
    [55]
    Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1830−1844. doi: 10.1002/jgrc.20135
    [56]
    Belcher S E, Grant A L M, Hanley K E, et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer[J]. Geophysical Research Letters, 2012, 39(18): L18605.
    [57]
    Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. Evaluating austral summer mixed-layer response to surface wave-induced mixing in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J18.
    [58]
    Huang Chuanjiang, Qiao Fangli, Dai Dejun. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research: Oceans, 2014, 119(4): 2568−2582. doi: 10.1002/2013JC009535
    [59]
    陈思宇, 乔方利, 黄传江, 等. 浪致混合对亚热带冬季海洋混合强度的影响[J]. 海洋学报, 2020, 42(5): 22−30.

    Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao, 2020, 42(5): 22−30.
    [60]
    Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC)[DB/OL]. [2021-09-10]. Issy-les-Moulineaux France, SEANOE. 2021. https://doi.org/10.17882/42182.
    [61]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [62]
    Meehl G A, Boer G J, Covey C, et al. The coupled model intercomparison project (CMIP)[J]. Bulletin of the American Meteorological Society, 2000, 81(2): 313−318. doi: 10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
    [63]
    Meehl G A, Covey C, Delworth T, et al. THE WCRP CMIP3 multimodel dataset: a new era in climate change research[J]. Bulletin of the American Meteorological Society, 2007, 88(9): 1383−1394. doi: 10.1175/BAMS-88-9-1383
    [64]
    Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485−498. doi: 10.1175/BAMS-D-11-00094.1
    [65]
    Liu Chengyan, Wang Zhaomin. On the response of the global subduction rate to globalwarming in coupled climate models[J]. Advances in Atmospheric Sciences, 2014, 31(1): 211−218. doi: 10.1007/s00376-013-2323-9
    [66]
    周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
    [67]
    赵宗慈, 罗勇, 黄建斌. CMIP6的设计[J]. 气候变化研究进展, 2016, 12(3): 258−260. doi: 10.12006/j.issn.1673-1719.2016.066

    Zhao Zongci, Luo Yong, Huang Jianbin. Design of CMIP6[J]. Climate Change Research, 2016, 12(3): 258−260. doi: 10.12006/j.issn.1673-1719.2016.066
    [68]
    Eyring V, Bony S, Meehl G A, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [69]
    IPCC. Climate Change 2013: the Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014: 1−1535.
    [70]
    O’Neill B C, Tebaldi C, Van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461−3482. doi: 10.5194/gmd-9-3461-2016
    [71]
    张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082

    Zhang Lixia, Chen Xiaolong, Xin Xiaoge. Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082
    [72]
    斯思, 毕训强, 孔祥慧, 等. CMIP6情景中主要温室气体和气溶胶排放强度的时空分布特征分析[J]. 气候与环境研究, 2020, 25(4): 366−384.

    Si Si, Bi Xunqiang, Kong Xianghui, et al. Spatial-temporal characteristics of the emission intensities of several major greenhouse gases and aerosols under CMIP6 scenarios[J]. Climatic and Environmental Research, 2020, 25(4): 366−384.
    [73]
    Qiu B, Huang Ruixin. Ventilation of the North Atlantic and North Pacific: subduction versus obduction[J]. Journal of Physical Oceanography, 1995, 25(10): 2374−2390. doi: 10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2
    [74]
    De Boyer Montégut C, Madec G, Fischer A S, et al. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology[J]. Journal of Geophysical Research, 2004, 109(C12): C12003. doi: 10.1029/2004JC002378
    [75]
    周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78(3): 332−350.

    Zhou Tianjun, Chen Ziming, Zou Liwei, et al. Development of climate and earth system models in China: Past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica, 2020, 78(3): 332−350.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (319) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return