Citation: | Lu Quan,Su Xue,Fang Zhou, et al. Evaluation of sustainable utilization of fishery resources in the Eastern Indian Ocean based on the mean trophic level[J]. Haiyang Xuebao,2021, 43(8):118–127 doi: 10.12284/hyxb2021104 |
[1] |
陈新军. 渔业资源可持续利用评价理论和方法[M]. 北京: 中国农业出版社, 2004: 1−53.
Chen Xinjun. Evaluation Theory and Method of Sustainable Utilization of Fishery Resources[M]. Beijing: China Agriculture Press, 2004: 1−53.
|
[2] |
Halpern B S, Longo C, Hardy D, et al. An index to assess the health and benefits of the global ocean[J]. Nature, 2012, 488(7413): 615−620. doi: 10.1038/nature11397
|
[3] |
Butchart S H M, Walpole M, Collen B, et al. Global biodiversity: indicators of recent declines[J]. Science, 2010, 328(5982): 1164−1168. doi: 10.1126/science.1187512
|
[4] |
Jennings S, Kaiser M J. The effects of fishing on marine ecosystems[J]. Advances in Marine Biology, 1998, 34: 201−352.
|
[5] |
Pikitch E K, Santora C, Babcock E A, et al. Ecosystem-based fishery management[J]. Science, 2004, 305(5682): 346−347. doi: 10.1126/science.1098222
|
[6] |
刘艳红, 黄硕琳, 陈锦辉. 以生态系统为基础的国际河流流域的管理制度[J]. 水产学报, 2008, 32(1): 125−130.
Liu Yanhong, Huang Shuolin, Chen Jinhui. Study on the ecosystem-based management for the international river basin[J]. Journal of Fisheries of China, 2008, 32(1): 125−130.
|
[7] |
Larkin P A. Concepts and issues in marine ecosystem management[J]. Reviews in Fish Biology and Fisheries, 1996, 6(2): 139−164.
|
[8] |
Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860−863. doi: 10.1126/science.279.5352.860
|
[9] |
Pennino M G, Bellido J M, Conesa D, et al. Trophic indicators to measure the impact of fishing on an exploited ecosystem[J]. Animal Biodiversity and Conservation, 2011, 34(1): 123−131.
|
[10] |
Christensen V. Fishery-induced changes in a marine ecosystem: insight from models of the Gulf of Thailand[J]. Journal of Fish Biology, 1998, 53(SA): 128−142. doi: 10.1111/j.1095-8649.1998.tb01023.x
|
[11] |
Milessi A C, Arancibia H, Neira S, et al. The mean trophic level of Uruguayan landings during the period 1990−2001[J]. Fisheries Research, 2005, 74(1/3): 223−231.
|
[12] |
Jaureguizar A J, Milessi A C. Assessing the sources of the fishing down marine food web process in the Argentine-Uruguayan common fishing zone[J]. Scientia Marina, 2008, 72(1): 25−36.
|
[13] |
Pinnegar J K, Jennings S, O’Brien C M, et al. Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution[J]. Journal of Applied Ecology, 2002, 39(3): 377−390. doi: 10.1046/j.1365-2664.2002.00723.x
|
[14] |
朱国平, 周应祺, 许柳雄. 印度洋金枪鱼渔业平均营养级的长期变动[J]. 大连水产学院学报, 2008, 23(6): 484−488.
Zhu Guoping, Zhou Yingqi, Xu Liuxiong. Long-term changes in the mean trophic level of tuna fishery in the Indian Ocean[J]. Journal of Dalian Fisheries University, 2008, 23(6): 484−488.
|
[15] |
朱国平, 张衡, 王家樵, 等. 大西洋金枪鱼渔业平均营养级的长期变动[J]. 生态科学, 2009, 28(2): 97−101. doi: 10.3969/j.issn.1008-8873.2009.02.001
Zhu Guoping, Zhang Heng, Wang Jiaqiao, et al. Long-term changes in the mean trophic level of tuna fishery in the Atlantic Ocean[J]. Ecological Science, 2009, 28(2): 97−101. doi: 10.3969/j.issn.1008-8873.2009.02.001
|
[16] |
丁琪, 陈新军, 李纲, 等. 基于渔获统计的西北太平洋渔业资源可持续利用评价[J]. 资源科学, 2013, 35(10): 2032−2040.
Ding Qi, Chen Xinjun, Li Gang, et al. Catch statistics and the sustainable utilization of Northwest Pacific Ocean fishery resources[J]. Resources Science, 2013, 35(10): 2032−2040.
|
[17] |
焦敏, 高郭平, 陈新军. 东北大西洋海洋捕捞渔获物营养级变化研究[J]. 海洋学报, 2016, 38(2): 48−63.
Jiao Min, Gao Guoping, Chen Xinjun. Changes in trophic level of marine catches in the northeast Atlantic[J]. Haiyang Xuebao, 2016, 38(2): 48−63.
|
[18] |
刘勇, 程家骅. 东海、黄海秋季渔业生物群落结构及其平均营养级变化特征初步分析[J]. 水产学报, 2015, 39(5): 691−702.
Liu Yong, Cheng Jiahua. A preliminary analysis of variation characteristics of structure and average trophic level of the main fishery species caught by paired bottom trawl in the East China Sea and the Yellow Sea during the fall season[J]. Journal of Fisheries of China, 2015, 39(5): 691−702.
|
[19] |
廖建基, 郑新庆, 杜建国, 等. 厦门同安湾定置网捕获鱼类的多样性及营养级特征[J]. 生物多样性, 2014, 22(5): 624−629. doi: 10.3724/SP.J.1003.2014.14051
Liao Jianji, Zheng Xinqing, Du Jianguo, et al. Biodiversity and trophic level characteristics of fishes captured by set nets in Tong’an Bay, Xiamen[J]. Biodiversity Science, 2014, 22(5): 624−629. doi: 10.3724/SP.J.1003.2014.14051
|
[20] |
杜建国, 叶观琼, 陈彬, 等. 中国海域海洋生物的营养级指数变化特征[J]. 生物多样性, 2014, 22(4): 532−538. doi: 10.3724/SP.J.1003.2014.13200
Du Jianguo, Ye Guanqiong, Chen Bin, et al. Changes in the marine trophic index of Chinese marine area[J]. Biodiversity Science, 2014, 22(4): 532−538. doi: 10.3724/SP.J.1003.2014.13200
|
[21] |
Pauly D, Palomares M L. Fishing down marine food web: it is far more pervasive than we thought[J]. Bulletin of Marine Science, 2005, 76(2): 197−211.
|
[22] |
Pauly D, Christensen V, Walters C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science, 2000, 57(3): 697−706. doi: 10.1006/jmsc.2000.0726
|
[23] |
Pauly D, Christensen V. Primary production required to sustain global fisheries[J]. Nature, 1995, 374(6519): 255−257. doi: 10.1038/374255a0
|
[24] |
杨晓明, 陈新军, 周应祺, 等. 基于海洋遥感的西北印度洋鸢乌贼渔场形成机制的初步分析[J]. 水产学报, 2006, 30(5): 669−675.
Yang Xiaoming, Chen Xinjun, Zhou Yingqi, et al. A marine remote sensing-based preliminary analysis on the fishing ground of purple flying squid Sthenoteuthis oualaniensis in the northwest Indian Ocean[J]. Journal of Fisheries of China, 2006, 30(5): 669−675.
|
[25] |
Pauly D, Watson R. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1454): 415−423. doi: 10.1098/rstb.2004.1597
|
[26] |
赵蓬蓬, 田思泉, 麻秋云, 等. 应用贝叶斯状态空间剩余产量模型框架评估印度洋大眼金枪鱼的资源状况[J]. 中国水产科学, 2020, 27(5): 579−588.
Zhao Pengpeng, Tian Siquan, Ma Qiuyun, et al. Stock assessment for bigeye tuna (Thunnus obesus) in the Indian Ocean using JABBA[J]. Journal of Fishery Sciences of China, 2020, 27(5): 579−588.
|
[27] |
Hoyle S D, Langley A D. Scaling factors for multi-region stock assessments, with an application to Indian Ocean tropical tunas[J]. Fisheries Research, 2020, 228: 105586. doi: 10.1016/j.fishres.2020.105586
|
[28] |
Foley C M R. Management implications of fishing up, down, or through the marine food web[J]. Marine Policy, 2013, 37: 176−182. doi: 10.1016/j.marpol.2012.04.016
|
[29] |
Sethi S A, Branch T A, Watson R. Global fishery development patterns are driven by profit but not trophic level[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(27): 12163−12167. doi: 10.1073/pnas.1003236107
|
[30] |
耿喆, 朱江峰, 戴小杰. 结合生物学信息的剩余产量模型: 以印度洋大青鲨为例[C]//2017年中国水产学会学术年会论文摘要集. 南昌: 中国水产学会, 2017: 87.
Geng Zhe, Zhu Jiangfeng, Dai Xiaojie. Incorporating life-history information in a Bayesian Pella-Tomlinson production model: an example from the Indian Ocean blue shark (Prionace glauca)[C]//2017 Annual Meeting of the Chinese Academy of Fisheries. Nanchang: China Fisheries Society, 2017: 87.
|
[31] |
耿喆, 朱江峰, 王扬, 等. 应用Catch-MSY模型评估印度洋蓝枪鱼资源[J]. 海洋学报, 2019, 41(8): 26−35.
Geng Zhe, Zhu Jiangfeng, Wang Yang, et al. Stock assessment for Indian Ocean blue marlin (Makaira nigricans) using Catch- MSY model[J]. Haiyang Xuebao, 2019, 41(8): 26−35.
|