Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Cao Shutao,Su Jie,Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao,2021, 43(7):63–74 doi: 10.12284/hyxb2021101
Citation: Cao Shutao,Su Jie,Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao,2021, 43(7):63–74 doi: 10.12284/hyxb2021101

Study on melt pond albedo based on Icepack sea ice column model

doi: 10.12284/hyxb2021101
  • Received Date: 2021-04-11
  • Rev Recd Date: 2021-05-14
  • Available Online: 2021-06-16
  • Publish Date: 2021-07-25
  • Based on one-dimensional sea ice column model Icepack, albedo and depth of melt pond were simulated. Atmospheric forcing data were collected from ICE06, a long-term ice station established during the Sixth Chinese National Arctic Research Expedition in 2014 in which the radiation and meteorological parameters of three melt ponds were continuously observed. In this paper, observed melt pond depth and thickness of sea ice under ponds were used as initial conditions. Furthermore, the calculation of sea ice freeboard in the melt pond scheme of level ice was improved by considering the effect of melt pond fraction. Consequently, by improving the formula of the maximum depth of melt pond above sea ice, simulation of melt pond albedo as well as other related parameters were successfully realized. Additionally, the inconsistency between the proportion coefficient of the incident solar radiation component and the weight coefficient of the corresponding albedo component was modified. The average errors between the simulated and observed albedo of the three ponds in the standard experiments were 0.01, 0.05 and 0.13, respectively. The sensitivity experiment results for the incident radiation proportion suggested that when the proportion of visible radiation increased by 8%, the simulation results of the melt pond albedo increased by 6%−8%. Results of the melt pond refreezing experiments suggested that when the thickness of lid ice is less than 0.02 m, the increase of simulated ice albedo is less than 0.006, resulting in a decrease of surface energy budget by about 1.1 W/m2. It is pointed out that providing an accurate proportion of incident radiation is necessary to improve the simulation of Arctic sea ice albedo. Furthermore, there are still some physical processes which need to be improved in Icepack/CICE model such as melt pond surface refreezing schemes, surface heat budget calculation, surface snow blowing effect and so on.
  • loading
  • [1]
    Curry J A, Schramm J L, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [2]
    Eicken H, Grenfell T C, Perovich D K, et al. Hydraulic controls of summer Arctic pack ice albedo[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08007.
    [3]
    Pirazzini R. Factors Controlling the Surface Energy Budget Over Snow and Ice[M]. Helsinki: Finnish Meteorological Institut, 2008.
    [4]
    Schröder D, Feltham D L, Flocco D, et al. September Arctic sea-ice minimum predicted by spring melt-pond fraction[J]. Nature Climate Change, 2014, 4(5): 353−357. doi: 10.1038/nclimate2203
    [5]
    Tucker III W B, Gow A J, Meese D A, et al. Physical characteristics of summer sea ice across the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 1999, 104(C1): 1489−1504. doi: 10.1029/98JC02607
    [6]
    Polashenski C, Perovich D, Courville Z. The mechanisms of sea ice melt pond formation and evolution[J]. Journal of Geophysical Research: Oceans, 2012, 117(C1): C01001.
    [7]
    Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): L08501.
    [8]
    Webster M A, Rigor I G, Perovich D K, et al. Seasonal evolution of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 5968−5982. doi: 10.1002/2015JC011030
    [9]
    Perovich D K, Tucker III W B, Ligett K A. Aerial observations of the evolution of ice surface conditions during summer[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): SHE 24-1−SHE 24-14.
    [10]
    Tschudi M A, Curry J A, Maslanik J A. Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D14): 15335−15344. doi: 10.1029/2000JD900275
    [11]
    Lu Peng, Li Zhijun, Cheng Bin, et al. Sea ice surface features in Arctic summer 2008: Aerial observations[J]. Remote Sensing of Environment, 2010, 114(4): 693−699. doi: 10.1016/j.rse.2009.11.009
    [12]
    王明锋, 苏洁, 李涛, 等. 基于无人机观测的北极冰面融池及冰面粗糙度信息提取方法研究[J]. 极地研究, 2017, 29(4): 436−445.

    Wang Mingfeng, Su Jie, Li Tao, et al. Study on the method of extracting Arctic melt pond and roughness information on sea ice surface based on UAV observation[J]. Chinese Journal of Polar Research, 2017, 29(4): 436−445.
    [13]
    Rösel A, Kaleschke L, Birnbaum G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network[J]. The Cryosphere, 2012, 6(2): 431−446. doi: 10.5194/tc-6-431-2012
    [14]
    Li Qing, Zhou Chunxia, Zheng Lei, et al. Monitoring evolution of melt ponds on first-year and multiyear sea ice in the Canadian Arctic Archipelago with optical satellite data[J]. Annals of Glaciology, 2020, 61(82): 154−163. doi: 10.1017/aog.2020.24
    [15]
    Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): SHE 20-1−SHE 20-13.
    [16]
    Hohenegger C, Alali B, Steffen K R, et al. Transition in the fractal geometry of Arctic melt ponds[J]. The Cryosphere, 2012, 6(5): 1157−1162. doi: 10.5194/tc-6-1157-2012
    [17]
    Perovich D K, Grenfell T C, Light B, et al. Transpolar observations of the morphological properties of Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A04.
    [18]
    Morassutti M P, LeDrew E F. Albedo and depth of melt ponds on sea-ice[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 1996, 16(7): 817−838.
    [19]
    Nicolaus M, Katlein C, Maslanik J, et al. Changes in Arctic sea ice result in increasing light transmittance and absorption[J]. Geophysical Research Letters, 2012, 39(24): L24501.
    [20]
    Hanesiak J M, Barber D G, de Abreu R A, et al. Local and regional albedo observations of Arctic first-year sea ice during melt ponding[J]. Journal of Geophysical Research: Oceans, 2001, 106(C1): 1005−1016. doi: 10.1029/1999JC000068
    [21]
    Fetterer F, Untersteiner N. Observations of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 1998, 103(C11): 24821−24835. doi: 10.1029/98JC02034
    [22]
    Lei Ruibo, Tian-Kunze Xiangshan, Leppäranta M, et al. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific Sector of Arctic Ocean during 1982–2009[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 5470−5486. doi: 10.1002/2016JC011831
    [23]
    Lu Peng, Leppäranta M, Cheng Bin, et al. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance[J]. Cold Regions Science and Technology, 2016, 124: 1−10. doi: 10.1016/j.coldregions.2015.12.010
    [24]
    Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703.
    [25]
    Stroeve J, Maslowski W. Arctic sea ice variability during the last half century[M]//Climate Variability and Extremes During the Past 100 Years. Dordrecht: Springer, 2008: 143−154.
    [26]
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [27]
    Flocco D, Feltham D L, Turner A K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08012.
    [28]
    Flocco D, Schroeder D, Feltham D L, et al. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09032.
    [29]
    Hunke E C, Hebert D A, Lecomte O. Level-ice melt ponds in the Los Alamos sea ice model, CICE[J]. Ocean Modelling, 2013, 71: 26−42. doi: 10.1016/j.ocemod.2012.11.008
    [30]
    Lüpkes C, Gryanik V M, Rösel A, et al. Effect of sea ice morphology during Arctic summer on atmospheric drag coefficients used in climate models[J]. Geophysical Research Letters, 2013, 40(2): 446−451. doi: 10.1002/grl.50081
    [31]
    Ingram W J, Wilson C A, Mitchell J F B. Modeling climate change: An assessment of sea ice and surface albedo feedbacks[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D6): 8609−8622. doi: 10.1029/JD094iD06p08609
    [32]
    Collins W D, Hackney J K, Edwards D P. An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D22): ACL 17-1−ACL 17-20.
    [33]
    Schramm J L, Holland M M, Curry J A, et al. Modeling the thermodynamics of a sea ice thickness distribution: 1. Sensitivity to ice thickness resolution[J]. Journal of Geophysical Research: Oceans, 1997, 102(C10): 23079−23091. doi: 10.1029/97JC01297
    [34]
    Briegleb B P, Bitz C M, Hunke E C, et al. Scientific description of the sea ice component in the community climate system model, version 3[R]. NCAR/TN-463+STR, Boulder, CO, USA: NCAR, 2004: 70.
    [35]
    Briegleb B P, Light B. A delta-eddington mutiple scattering parameterization for solar radiation in the sea ice component of the community climate system model[R]. NCAR Tech. Note NCAR/TN-472+ STR, Boulder, Colorado: NCAR, 2007: 1−108.
    [36]
    Briegleb B P. Delta-Eddington approximation for solar radiation in the NCAR community climate model[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D7): 7603−7612. doi: 10.1029/92JD00291
    [37]
    Wu Shuqiang, Zeng Qingcun, Bi Xunqiang. Modeling of Arctic sea ice variability during 1948–2009: Validation of two versions of the Los Alamos sea ice model (CICE)[J]. Atmospheric and Oceanic Science Letters, 2015, 8(4): 215−219. doi: 10.1080/16742834.2015.11447262
    [38]
    刘骥平, 雷瑞波, 宋米荣, 等. 适应极地快速变化海冰模式的研发与挑战[J]. 大气科学学报, 2021, 44(1): 12−25.

    Liu Jiping, Lei Ruibo, Song Mirong, et al. Development and challenge of sea ice model adapting to rapid polar sea ice changes[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 12−25.
    [39]
    Taylor P D, Feltham D L. A model of melt pond evolution on sea ice[J]. Journal of Geophysical Research: Oceans, 2004, 109(C12): C12007. doi: 10.1029/2004JC002361
    [40]
    Cheng Bin, Zhang Zhanhai, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09020.
    [41]
    Flocco D, Feltham D L, Bailey E, et al. The refreezing of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 647−659. doi: 10.1002/2014JC010140
    [42]
    CICE-Consortium/Icepack: Icepack 1.2. 4 (Version 1.2. 4)[EB/OL]. (2020−12−18)[2021−04−10]. http://doi.org/10.5281/zenodo.4358418.
    [43]
    Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice[J]. Journal of Climate, 2011, 25(5): 1413−1430.
    [44]
    王传印, 苏洁. CICE海冰模式中融池参数化方案的比较研究[J]. 海洋学报, 2015, 37(11): 41−56.

    Wang Chuanyin, Su Jie. Comparison of melt pond parameterization schemes in CICE model[J]. Haiyang Xuebao, 2015, 37(11): 41−56.
    [45]
    Eicken H, Bluhm B A, Collins R E, et al. Field techniques in sea-ice research[M]//Shen H. Cold Regions Science and Marine Technology. Paris, France: Eolss Publishers, 2014: 1−20.
    [46]
    Semtner Jr A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate[J]. Journal of Physical Oceanography, 1976, 6(3): 379−389. doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
    [47]
    Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of sea ice[J]. Journal of Geophysical Research Oceans, 1999, 104(C7): 15669−15677. doi: 10.1029/1999JC900100
    [48]
    Feltham D L, Untersteiner N, Wettlaufer J S, et al. Sea ice is a mushy layer[J]. Geophysical Research Letters, 2006, 33(14): L14501. doi: 10.1029/2006GL026290
    [49]
    Grenfell T C, Perovich D K. Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 1984, 89(C3): 3573−3580. doi: 10.1029/JC089iC03p03573
    [50]
    Rosati A, Miyakoda K. A general circulation model for upper ocean simulation[J]. Journal of Physical Oceanography, 1988, 18(11): 1601−1626. doi: 10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
    [51]
    Lu P, Cao X, Wang Qingkai, et al. Impact of a surface ice lid on the optical properties of melt ponds[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8313−8328. doi: 10.1029/2018JC014161
    [52]
    Lei Ruibo, Cheng Bin, Heil P, et al. Seasonal and interannual variations of sea ice mass balance from the Central Arctic to the Greenland Sea[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2422−2439. doi: 10.1002/2017JC013548
    [53]
    Malinka A, Zege E, Istomina L, et al. Reflective properties of melt ponds on sea ice[J]. The Cryosphere, 2018, 12(6): 1921−1937. doi: 10.5194/tc-12-1921-2018
    [54]
    Curry J A, Schramm J L, Perovich D K, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D14): 15345−15355. doi: 10.1029/2000JD900311
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (220) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return