Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Zhou Wen,Wang Peitao,Wang Gang, et al. Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations[J]. Haiyang Xuebao,2021, 43(5):27–37 doi: 10.12284/hyxb2021095
Citation: Zhou Wen,Wang Peitao,Wang Gang, et al. Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations[J]. Haiyang Xuebao,2021, 43(5):27–37 doi: 10.12284/hyxb2021095

Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations

doi: 10.12284/hyxb2021095
  • Received Date: 2020-05-24
  • Rev Recd Date: 2020-10-19
  • Available Online: 2021-04-20
  • Publish Date: 2021-07-06
  • Numerical simulation, as the major research method of tsunami, plays a key role in tsunami warning. The present paper develops a second-order accuracy numerical tsunami model in the spherical coordinate using the Godunov-type finite volume method and MUSCL-Hancock scheme. An HLLC approximate Riemann solver is employed to evaluate fluxes across cell interfaces. The well-balanced expression format of shallow water equations ensures the numerical stability, while the local topography reconstruction method is used to deal with the moving shoreline boundary. The model is used to investigate the propagation of the 16 September 2015 Chile tsunami. The capability of the model is verified by comparison with the observational data from 14 coastal tidal-gauge stations near Chile and 20 DART buoys covering the Pacific Ocean.
  • loading
  • [1]
    Barrientos S E, Ward S N. The 1960 Chile earthquake: Inversion for slip distribution from surface deformation[J]. Geophysical Journal International, 1990, 103(3): 589−598. doi: 10.1111/j.1365-246X.1990.tb05673.x
    [2]
    Bernard E N, Meinig C. History and future of deep-ocean tsunami measurements[C]//Oceans'11 MTS/IEEE Kona. Waikoloa, HI, USA: IEEE, 2011: 1−7.
    [3]
    董杰, 田士政, 武文, 等. 全球海啸预警系统发展及其对我国的启示[J]. 海洋通报, 2019, 38(4): 368−378.

    Dong Jie, Tian Shizheng, Wu Wen, et al. The development of global tsunami warning systems and their enlightenments to China[J]. Marine Science Bulletin, 2019, 38(4): 368−378.
    [4]
    Mandli K T, Ahmadia A J, Berger M, et al. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs[J]. PeerJ Computer Science, 2016, 2: e68. doi: 10.7717/peerj-cs.68
    [5]
    Berger M J, George D L, LeVeque R J, et al. The GeoClaw software for depth-averaged flows with adaptive refinement[J]. Advances in Water Resources, 2011, 34(9): 1195−1206. doi: 10.1016/j.advwatres.2011.02.016
    [6]
    Kirby J T, Wei G, Chen Q, et al. FUNWAVE 1.0: Fully nonlinear Boussinesq wave model-documentation and user's manual[R]. Network, USA: University of Delaware, 1998.
    [7]
    Shi Fengyan, Kirby J T, Harris J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43−44: 36−51. doi: 10.1016/j.ocemod.2011.12.004
    [8]
    Yuan Ye, Shi Fengyan, Kirby J T, et al. FUNWAVE-GPU: Multiple-GPU acceleration of a Boussinesq-type wave model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(5): e2019MS001957.
    [9]
    Yamazaki Y, Kowalik Z, Cheung K F. Depth-integrated, non-hydrostatic model for wave breaking and run-up[J]. International Journal for Numerical Methods in Fluids, 2009, 61(5): 473−497. doi: 10.1002/fld.1952
    [10]
    Zhao Binbin, Duan Wenyang, Webster W C. Tsunami simulation with Green-Naghdi theory[J]. Ocean Engineering, 2011, 38(2/3): 389−396.
    [11]
    Titov V V, Gonzalez F I. Implementation and testing of the Method of Splitting Tsunami (MOST) model[R]. Washington, USA: Pacific Marine Environmental Laboratory, NOAA, 1997.
    [12]
    余锡平. 近岸水波的数值方法[M]. 北京: 科学出版社, 2017.

    Yu Xiping. Numerical Methods in Nearshore Wave[M]. Beijing: Science Press, 2017.
    [13]
    Toro E F. Shock-Capturing Methods for Free-Surface Shallow Flows[M]. Chichester, UK: John Wiley & Sons Inc, 2001.
    [14]
    Alias N A, Liang Qiuhua, Kesserwani G. A Godunov-type scheme for modelling 1D channel flow with varying width and topography[J]. Computers & Fluids, 2011, 46(1): 88−93.
    [15]
    Xia Xilin, Liang Qiuhua. A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations[J]. Advances in Water Resources, 2018, 117: 87−97. doi: 10.1016/j.advwatres.2018.05.004
    [16]
    Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. Siam Review, 1983, 25(1): 35−61. doi: 10.1137/1025002
    [17]
    Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25−34. doi: 10.1007/BF01414629
    [18]
    Liang Qiuhua, Borthwick A G L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography[J]. Computers & Fluids, 2009, 38(2): 221−234.
    [19]
    Baba T, Allgeyer S, Hossen J, et al. Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change[J]. Ocean Modelling, 2017, 111: 46−54. doi: 10.1016/j.ocemod.2017.01.002
    [20]
    Van Leer B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135(2): 229−248. doi: 10.1006/jcph.1997.5704
    [21]
    Liang Qiuhua. Flood simulation using a well-balanced shallow flow model[J]. Journal of Hydraulic Engineering, 2010, 136(9): 669−675. doi: 10.1061/(ASCE)HY.1943-7900.0000219
    [22]
    Liang Qiuhua, Marche F. Numerical resolution of well-balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873−884. doi: 10.1016/j.advwatres.2009.02.010
    [23]
    Steketee J A. On volterra’s dislocations in a semi-infinite elastic medium[J]. Canadian Journal of Physics, 1958, 36(2): 192−205. doi: 10.1139/p58-024
    [24]
    Steketee J A. Some geophysical applications of the elasticity theory of dislocations[J]. Canadian Journal of Physics, 1958, 36(9): 1168−1198. doi: 10.1139/p58-123
    [25]
    Kajiura K. The leading wave of a tsunami[J]. Bulletin of the Earthquake Research Institute, 1963, 41(3): 535−571.
    [26]
    Mansinha L, Smylie D E. The displacement field of inclined faults[J]. Bulletin of the Seismological Society of America, 1971, 61(5): 1433−1440.
    [27]
    Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135−1154.
    [28]
    于福江, 王培涛, 赵联大, 等. 2010年智利地震海啸数值模拟及其对我国沿海的影响分析[J]. 地球物理学报, 2011, 54(4): 918−925.

    Yu Fujiang, Wang Peitao, Zhao Lianda, et al. Numerical simulation of 2010 Chile tsunami and its impact on Chinese coasts[J]. Chinese Journal of Geophysics, 2011, 54(4): 918−925.
    [29]
    王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9): 3088−3096. doi: 10.6038/j.issn.0001-5733.2012.09.026

    Wang Peitao, Yu Fujiang, Zhao Lianda, et al. Numerical analysis of tsunami propagating generated by the Japan Mw9.0 earthquake on Mar. 11 in 2011 and its impact on China coasts[J]. Chinese Journal of Geophysics, 2012, 55(9): 3088−3096. doi: 10.6038/j.issn.0001-5733.2012.09.026
    [30]
    闪迪, 王培涛, 任智源, 等. 有限断层模型在2015年9月16日智利Mw8.3级地震海啸数值模拟中的应用与评估[J]. 海洋学报, 2017, 39(11): 49−60.

    Shan Di, Wang Peitao, Ren Zhiyuan, et al. Application and evaluation of the 16 September 2015 Illapel, Chile Mw8.3 earthquake finite fault rupture model from numerical simulation[J]. Haiyang Xuebao, 2017, 39(11): 49−60.
    [31]
    Wu Wennan, Zhao Li, Wu Y M. Empirical relationships between aftershock zone dimensions and moment magnitudes for plate boundary earthquakes in Taiwan[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 424−436. doi: 10.1785/0120120173
    [32]
    Hayes G P, Myers E K, Dewey J W, et al. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015[R]. USA: USGS, 2016.
    [33]
    Kanamori H, Rivera L. Source inversion of W phase: Speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1): 222−238. doi: 10.1111/j.1365-246X.2008.03887.x
    [34]
    Glimsdal S, Pedersen G K, Harbitz C B, et al. Dispersion of tsunamis: Does it really matter?[J]. Natural Hazards and Earth System Sciences, 2013, 13(6): 1507−1526. doi: 10.5194/nhess-13-1507-2013
    [35]
    Watada S, Kusumoto S, Satake K. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(5): 4287−4310. doi: 10.1002/2013JB010841
    [36]
    王岗, 胡见, 王培涛, 等. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5): 15−23.

    Wang Gang, Hu Jian, Wang Peitao, et al. Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge[J]. Haiyang Xuebao, 2018, 40(5): 15−23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (420) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return