Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Peng Jingping,Ge Yunzheng,Chen Fengyun, et al. Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle[J]. Haiyang Xuebao,2021, 43(5):120–126 doi: 10.12284/hyxb2021085
Citation: Peng Jingping,Ge Yunzheng,Chen Fengyun, et al. Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle[J]. Haiyang Xuebao,2021, 43(5):120–126 doi: 10.12284/hyxb2021085

Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle

doi: 10.12284/hyxb2021085
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-06-04
  • Available Online: 2021-04-02
  • Publish Date: 2021-07-06
  • In view of the problems of small available temperature difference and low utilization efficiency of ocean thermal energy conversion (OTEC). A new thermodynamic cycle of OTEC using non-azeotropic mixed working fluid is proposed. Based on the laws of thermodynamics, the thermodynamic analysis of the proposed thermodynamic cycle is carried out. Evaporation pressure, mass fraction of working fluid, evaporation temperature and condensation temperature are selected as influencing variables to study the proposed thermodynamic cycle. The results show that when the working fluid mass fraction is selected as a variable, with the evaporation pressure increases the cycle thermal efficiency and the net output of system increase first and then decrease. The system thermal efficiency achieves a maximum value of 5.28% when the working fluid mass fraction is 0.91. The maximum value of 3.83 kW is obtained when the mass fraction of the working fluid is 0.96. When the evaporation pressure is selected as the variable, the cycle thermal efficiency and the net output of the system increase first and then decrease with the mass fraction of the working medium increases. The cycle thermal efficiency achieves a maximum value of 5.26% when the evaporating pressure is 0.595 MPa, and the net output work obtains a maximum value of 3.57 kW when the evaporating pressure is 0.58 MPa. Compared with Uehara cycle and Yoon cycle under the same operating conditions, the proposed cycle system has the highest thermal efficiency. The analysis results of the proposed thermal cycle system can provide a theoretical basis and reference for improving the utilization efficiency of OTEC.
  • loading
  • [1]
    Khan N, Kalair A, Abas N, et al. Review of ocean tidal, wave and thermal energy technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590−604. doi: 10.1016/j.rser.2017.01.079
    [2]
    Hammar L, Ehnberg J, Mavume A, et al. Renewable ocean energy in the Western Indian Ocean[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4938−4950. doi: 10.1016/j.rser.2012.04.026
    [3]
    丁亮, 李卉, 史学增. 基于太阳能再热循环的海洋温差发电系统性能分析与改进[J]. 中国造船, 2019, 60(S1): 171−178.

    Ding Liang, Li Hui, Shi Xuezeng. Performance analysis and improvement of solar energy reheated CC-OTEC system[J]. Shipbuilding of China, 2019, 60(S1): 171−178.
    [4]
    刘伟民, 麻常雷, 陈凤云, 等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1): 1−18.

    Liu Weimin, Ma Changlei, Chen Fengyun, et al. Exploitation and technical progress of marine renewable energy[J]. Advances in Marine Science, 2018, 36(1): 1−18.
    [5]
    Jung J Y, Lee H S, Kim H J, et al. Thermoeconomic analysis of an ocean thermal energy conversion plant[J]. Renewable Energy, 2016, 86: 1086−1094. doi: 10.1016/j.renene.2015.09.031
    [6]
    Ikegami Y, Yasunaga T, Morisaki T. Ocean thermal energy conversion using double-stage Rankine cycle[J]. Journal of Marine Science and Engineering, 2018, 6(1): 21. doi: 10.3390/jmse6010021
    [7]
    Chen Fengyun, Liu Lei, Peng Jingping, et al. Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the Rankine cycle mode[J]. Energy, 2019, 183: 497−503. doi: 10.1016/j.energy.2019.04.008
    [8]
    黄靖伦, 王辉涛, 喻智锋, 等. 非共沸混合工质有机朗肯循环余热回收系统的热力性能[J]. 中国水运, 2018, 18(8): 229−230.

    Huang Jinglun, Wang Huitao, Yu Zhifeng, et al. Thermodynamic performance of non-azeotropic mixed working fluid organic Rankine cycle waste heat recovery system[J]. China Water Transport, 2018, 18(8): 229−230.
    [9]
    Aydin H, Lee H S, Kim H J, et al. Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating[J]. Renewable Energy, 2014, 72: 154−163. doi: 10.1016/j.renene.2014.07.001
    [10]
    Kusuda E, Morisaki T, Ikegami Y. Performance test of double-stage Rankine cycle experimental plant for OTEC[J]. Procedia Engineering, 2015, 105: 713−718. doi: 10.1016/j.proeng.2015.05.061
    [11]
    Kalina A. Combined-cycle system with novel bottoming cycle[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 737−742. doi: 10.1115/1.3239632
    [12]
    Uehara H, Ikegami Y, Nishida T. Performance analysis of OTEC system using a cycle with absorption and extraction processes[J]. Transactions of the Japan Society of Mechanical Engineers, 1998, 64(624): 2750−2755. doi: 10.1299/kikaib.64.2750
    [13]
    Matsuda Y, Yoshitake T, Sugi T, et al. Construction of a static model for power generation of OTEC plant using uehara cycle based on experimental data[J]. Journal of Marine Science and Engineering, 2018, 6(1): 18−31. doi: 10.3390/jmse6010018
    [14]
    Ikegami Y, Yasunaga T, Harada H. Performance experiments on ocean thermal energy conversion system using the uehara cycle[J]. Bulletin of the Society of Sea Water Science Japan, 2006, 60(1): 32−38.
    [15]
    Yuan Han, Mei Ning, Yang Shuai, et al. Theoretical investigation of a power cycle using ammonia-water as working fluid[J]. Advanced Materials Research, 2014, 875−877: 1837−1841. doi: 10.4028/www.scientific.net/AMR.875-877.1837
    [16]
    Yuan Han, Mei Ning, Zhou Peilin. Performance analysis of an absorption power cycle for ocean thermal energy conversion[J]. Energy Conversion and Management, 2014, 87: 199−207. doi: 10.1016/j.enconman.2014.07.015
    [17]
    Yoon J I, Son C H, Baek S M, et al. Performance characteristics of a high-efficiency R717 OTEC power cycle[J]. Applied Thermal Engineering, 2014, 72(2): 304−308. doi: 10.1016/j.applthermaleng.2014.05.103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (351) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return