Citation: | Peng Jingping,Ge Yunzheng,Chen Fengyun, et al. Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle[J]. Haiyang Xuebao,2021, 43(5):120–126 doi: 10.12284/hyxb2021085 |
[1] |
Khan N, Kalair A, Abas N, et al. Review of ocean tidal, wave and thermal energy technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590−604. doi: 10.1016/j.rser.2017.01.079
|
[2] |
Hammar L, Ehnberg J, Mavume A, et al. Renewable ocean energy in the Western Indian Ocean[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4938−4950. doi: 10.1016/j.rser.2012.04.026
|
[3] |
丁亮, 李卉, 史学增. 基于太阳能再热循环的海洋温差发电系统性能分析与改进[J]. 中国造船, 2019, 60(S1): 171−178.
Ding Liang, Li Hui, Shi Xuezeng. Performance analysis and improvement of solar energy reheated CC-OTEC system[J]. Shipbuilding of China, 2019, 60(S1): 171−178.
|
[4] |
刘伟民, 麻常雷, 陈凤云, 等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1): 1−18.
Liu Weimin, Ma Changlei, Chen Fengyun, et al. Exploitation and technical progress of marine renewable energy[J]. Advances in Marine Science, 2018, 36(1): 1−18.
|
[5] |
Jung J Y, Lee H S, Kim H J, et al. Thermoeconomic analysis of an ocean thermal energy conversion plant[J]. Renewable Energy, 2016, 86: 1086−1094. doi: 10.1016/j.renene.2015.09.031
|
[6] |
Ikegami Y, Yasunaga T, Morisaki T. Ocean thermal energy conversion using double-stage Rankine cycle[J]. Journal of Marine Science and Engineering, 2018, 6(1): 21. doi: 10.3390/jmse6010021
|
[7] |
Chen Fengyun, Liu Lei, Peng Jingping, et al. Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the Rankine cycle mode[J]. Energy, 2019, 183: 497−503. doi: 10.1016/j.energy.2019.04.008
|
[8] |
黄靖伦, 王辉涛, 喻智锋, 等. 非共沸混合工质有机朗肯循环余热回收系统的热力性能[J]. 中国水运, 2018, 18(8): 229−230.
Huang Jinglun, Wang Huitao, Yu Zhifeng, et al. Thermodynamic performance of non-azeotropic mixed working fluid organic Rankine cycle waste heat recovery system[J]. China Water Transport, 2018, 18(8): 229−230.
|
[9] |
Aydin H, Lee H S, Kim H J, et al. Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating[J]. Renewable Energy, 2014, 72: 154−163. doi: 10.1016/j.renene.2014.07.001
|
[10] |
Kusuda E, Morisaki T, Ikegami Y. Performance test of double-stage Rankine cycle experimental plant for OTEC[J]. Procedia Engineering, 2015, 105: 713−718. doi: 10.1016/j.proeng.2015.05.061
|
[11] |
Kalina A. Combined-cycle system with novel bottoming cycle[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 737−742. doi: 10.1115/1.3239632
|
[12] |
Uehara H, Ikegami Y, Nishida T. Performance analysis of OTEC system using a cycle with absorption and extraction processes[J]. Transactions of the Japan Society of Mechanical Engineers, 1998, 64(624): 2750−2755. doi: 10.1299/kikaib.64.2750
|
[13] |
Matsuda Y, Yoshitake T, Sugi T, et al. Construction of a static model for power generation of OTEC plant using uehara cycle based on experimental data[J]. Journal of Marine Science and Engineering, 2018, 6(1): 18−31. doi: 10.3390/jmse6010018
|
[14] |
Ikegami Y, Yasunaga T, Harada H. Performance experiments on ocean thermal energy conversion system using the uehara cycle[J]. Bulletin of the Society of Sea Water Science Japan, 2006, 60(1): 32−38.
|
[15] |
Yuan Han, Mei Ning, Yang Shuai, et al. Theoretical investigation of a power cycle using ammonia-water as working fluid[J]. Advanced Materials Research, 2014, 875−877: 1837−1841. doi: 10.4028/www.scientific.net/AMR.875-877.1837
|
[16] |
Yuan Han, Mei Ning, Zhou Peilin. Performance analysis of an absorption power cycle for ocean thermal energy conversion[J]. Energy Conversion and Management, 2014, 87: 199−207. doi: 10.1016/j.enconman.2014.07.015
|
[17] |
Yoon J I, Son C H, Baek S M, et al. Performance characteristics of a high-efficiency R717 OTEC power cycle[J]. Applied Thermal Engineering, 2014, 72(2): 304−308. doi: 10.1016/j.applthermaleng.2014.05.103
|