Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Sun Qizhen,Zhang Zhanhai,Fu Min, et al. Characteristics of katabatic winds from Dome A to the coast of Prydz Bay, Antarctica[J]. Haiyang Xuebao,2021, 43(7):125–137 doi: 10.12284/hyxb2021079
Citation: Sun Qizhen,Zhang Zhanhai,Fu Min, et al. Characteristics of katabatic winds from Dome A to the coast of Prydz Bay, Antarctica[J]. Haiyang Xuebao,2021, 43(7):125–137 doi: 10.12284/hyxb2021079

Characteristics of katabatic winds from Dome A to the coast of Prydz Bay, Antarctica

doi: 10.12284/hyxb2021079
  • Received Date: 2020-04-02
  • Rev Recd Date: 2020-04-26
  • Available Online: 2021-04-16
  • Publish Date: 2021-07-25
  • Using archived data from Chinese Polar Numerical Weather Forecasting System (PNWFS) and America Antarctic Mesoscale Prediction System, the spatial and temporal distribution of katabatic winds and air mass flux from Dome A to the coast of Prydz Bay are analyzed, and basic characteristics of katabatic winds in the region are depicted. It is found that the katabatic winds in this area is strongly affected by the terrain of the Antarctica ice sheet. Steep terrain such as the western side of the Amery Ice Shelf sees stronger katabatic winds than smooth terrain does; and the katabatic winds vary greatly with the season for temporal distribution with stronger winds in winter. Adiabatic warming, which can be found in the area where strong katabatic winds flow, causes increasing of near surface temperature at the Amery Ice Shelf. The maximum katabatic wind speed zone is located at a height of about 100 m to 200 m above the ground. Katabatic winds extents to higher altitudes while surface winds are stronger. The surface air mass flux of the katabatic winds along the coast of the Prydz Bay is extremely uneven in spatial and temporal distribution. Strong katabatic winds in the Amery Ice Shelf are linked to more mesoscale cyclone activities in the Prydz Bay waters. The process of mesoscale cyclones induced by katabatic winds in the Prydz Bay is worthy of attention, thus the mechanism of cyclogenesis forced by katabatic winds needs further notice.
  • loading
  • [1]
    Bromwich D H, Parish T R, Pellegrini A, et al. Spatial and temporal characteristics of the intense katabatic winds at Terra Nova Bay, Antarctica[M]//Bromwich D H, Stearns C R. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations. Washington D. C.: Antarctic Research Series, 1993, 61: 47−68.
    [2]
    Yamada K, Hirasawa N. Analysis of a record-breaking strong wind event at Syowa station in January 2015[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(24): 13643−13657.
    [3]
    Parish T R, Cassano J J. Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations[J]. Monthly Weather Review, 2003, 131(6): 1128−1139. doi: 10.1175/1520-0493(2003)131<1128:DOTKWI>2.0.CO;2
    [4]
    孙启振, 张林, 张占海, 等. 南极中山站夏季下降风数值模拟个例研究[J]. 海洋学报, 2016, 38(3): 71−81.

    Sun Qizhen, Zhang Lin, Zhang Zhanhai, et al. Numerical simulation of summer katabatic wind at Zhongshan Station, Antarctica: A case study[J]. Haiyang Xuebao, 2016, 38(3): 71−81.
    [5]
    Ball F K. The theory of strong katabatic winds[J]. Australian Journal of Physics, 1956, 9(3): 373−386. doi: 10.1071/PH560373
    [6]
    Carrasco J F, Bromwich D H, Monaghan A J. Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea[J]. Monthly Weather Review, 2003, 131(2): 289−301. doi: 10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2
    [7]
    Bromwich D H, Steinhoff D F, Simmonds I, et al. Climatological aspects of cyclogenesis near Adélie Land Antarctica[J]. Tellus A: Dynamic Meteorology and Oceanography, 2011, 63(5): 921−938. doi: 10.1111/j.1600-0870.2011.00537.x
    [8]
    Parish T R, Bromwich D H. Continental-scale simulation of the Antarctic katabatic wind regime[J]. Journal of Climate, 1991, 4(2): 136−146.
    [9]
    Renfrew I A, Anderson P S. Profiles of katabatic flow in summer and winter over Coats Land, Antarctica[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(616): 779−802. doi: 10.1256/qj.05.148
    [10]
    Parish T R, Bromwich D H. The surface windfield over the Antarctic ice sheets[J]. Nature, 1987, 328(6125): 51−54. doi: 10.1038/328051a0
    [11]
    Parish T R, Bromwich D H. Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes[J]. Monthly Weather Review, 2007, 135(5): 1961−1973. doi: 10.1175/MWR3374.1
    [12]
    Vihma T, Tuovinen E, Savijärvi H. Interaction of katabatic winds and near-surface temperatures in the Antarctic[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D21): D21119. doi: 10.1029/2010JD014917
    [13]
    Parish T R, Bromwich D H. A case study of Antarctic katabatic wind interaction with large-scale forcing[J]. Monthly Weather Review, 1998, 126(1): 199−209. doi: 10.1175/1520-0493(1998)126<0199:ACSOAK>2.0.CO;2
    [14]
    Bromwich D H. Mesoscale cyclogenesis over the southwestern Ross Sea linked to strong katabatic winds[J]. Monthly Weather Review, 1991, 119(7): 1736−1753. doi: 10.1175/1520-0493(1991)119<1736:MCOTSR>2.0.CO;2
    [15]
    Carrasco J F, Bromwich D H. A katabatic-wind-forced mesoscale cyclone development over the Ross Ice Shelf near Byrd Glacier during summer[J]. Antarctic Journal of the United States, 1993, 28(5): 285−288.
    [16]
    Zhou Chunxia, Zheng Lei, Sun Qizhen, et al. Amery Ice Shelf surface snowmelt detected by ASCAT and Sentinel-1[J]. Remote Sensing Letters, 2019, 10(5): 430−438. doi: 10.1080/2150704X.2018.1553317
    [17]
    Parish T R. On the role of Antarctic katabatic winds in forcing large-scale tropospheric motions[J]. Journal of the Atmospheric Sciences, 1992, 49(15): 1374−1385. doi: 10.1175/1520-0469(1992)049<1374:OTROAK>2.0.CO;2
    [18]
    Ding Minghu, Xiao Cunde, Li Chuanjin, et al. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica[J]. Science China: Earth Sciences, 2015, 58(10): 1787−1797. doi: 10.1007/s11430-015-5083-9
    [19]
    Ding Minghu, Yang Diyi, Van Den Broeke M, et al. The surface energy balance at Panda 1 station, princess Elizabeth land: a typical katabatic wind region in East Antarctica[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(3): e2019JD030378. doi: 10.1029/2019JD030378
    [20]
    秦听, 魏立新, 李珵. 我国南极科考站附近气旋的特征分析[J]. 海洋学报, 2017, 39(5): 44−60.

    Qin Ting, Wei Lixin, Li Cheng. The statistic and variance of cyclones enter in scientific investigation station of China in Antarctic[J]. Haiyang Xuebao, 2017, 39(5): 44−60.
    [21]
    孙虎林, 秦听, 魏立新, 等. 中国南极考察航线上气旋大风过程统计分析[J]. 海洋学报, 2020, 42(1): 54−66.

    Sun Hulin, Qin Ting, Wei Lixin, et al. A statistical analysis on cyclonic gale processes along Chinese Antarctic research expedition routes[J]. Haiyang Xuebao, 2020, 42(1): 54−66.
    [22]
    Kobayashi S I. Snow transport by katabatic winds in Mizuho Camp area, East Antarctica[J]. Journal of the Meteorological Society of Japan. Ser. II, 1978, 56(2): 130−139. doi: 10.2151/jmsj1965.56.2_130
    [23]
    Scarchilli C, Frezzotti M, Grigioni P, et al. Extraordinary blowing snow transport events in East Antarctica[J]. Climate Dynamics, 2010, 34(7/8): 1195−1206.
    [24]
    Chambers S D, Preunkert S, Weller R, et al. Characterizing atmospheric transport pathways to Antarctica and the remote southern ocean using radon-222[J]. Frontiers in Earth Science, 2018, 6: 190. doi: 10.3389/feart.2018.00190
    [25]
    Hines K M, Bromwich D H. Development and testing of polar weather research and forecasting (WRF) model. Part I: Greenland ice sheet meteorology[J]. Monthly Weather Review, 2008, 136(6): 1971−1989. doi: 10.1175/2007MWR2112.1
    [26]
    Bromwich D H, Otieno F O, Hines K M, et al. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 274−292. doi: 10.1029/2012JD018139
    [27]
    孙启振, 丁卓铭, 沈辉, 等. 我国极地数值天气预报系统的初步建立与应用[J]. 海洋预报, 2017, 34(4): 1−10. doi: 10.11737/j.issn.1003-0239.2017.04.001

    Sun Qizhen, Ding Zhuoming, Shen Hui, et al. Polar numerical weather prediction system: Preliminary establishment and application[J]. Marine Forecasts, 2017, 34(4): 1−10. doi: 10.11737/j.issn.1003-0239.2017.04.001
    [28]
    Powers J G, Manning K W, Bromwich D H, et al. A decade of Antarctic science support through AMPS[J]. Bulletin of the American Meteorological Society, 2012, 93(11): 1699−1712. doi: 10.1175/BAMS-D-11-00186.1
    [29]
    Powers J G, Monaghan A J, Cayette A M, et al. Real-time mesoscale modeling over Antarctica: The Antarctic mesoscale prediction system[J]. Bulletin of the American Meteorological Society, 2003, 84(11): 1533−1546. doi: 10.1175/BAMS-84-11-1533
    [30]
    Wille J D, Bromwich D H, Cassano J J, et al. Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf, Antarctica, with unmanned aircraft observations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(8): 2239−2258. doi: 10.1175/JAMC-D-16-0339.1
    [31]
    Kirchgaessner A, King J, Gadian A. The representation of Föhn events to the east of the Antarctic Peninsula in simulations by the Antarctic mesoscale prediction system[J]. Journal of Geophysical Research: Atmospheres, 2020, 124(24): 13663−13679. doi: 10.1029/2019JD030637
    [32]
    Dittmann A, Schlosser E, Masson-Delmotte V, et al. Precipitation regime and stable isotopes at Dome Fuji, East Antarctica[J]. Atmospheric Chemistry and Physics, 2006, 16(11): 6883−6900.
    [33]
    Hines K M, Bromwich D H, Wang S H, et al. Microphysics of summer clouds in central West Antarctica simulated by the polar weather research and forecasting model (WRF) and the antarctic mesoscale prediction system (AMPS)[J]. Atmospheric Chemistry and Physics, 2019, 19(19): 12431−12454. doi: 10.5194/acp-19-12431-2019
    [34]
    Francis D, Eayrs C, Cuesta J, et al. Polar cyclones at the origin of the reoccurrence of the Maud Rise Polynya in austral winter 2017[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(10): 5251−5267. doi: 10.1029/2019JD030618
    [35]
    Massom R A, Harris P T, Michael K J, et al. The distribution and formative processes of latent-heat polynyas in East Antarctica[J]. Annals of Glaciology, 1998, 27: 420−426. doi: 10.3189/1998AoG27-1-420-426
    [36]
    李群, 吴辉碇, 张璐. 普里兹湾海冰季节性变化的高分辨率数值模拟[J]. 海洋学报, 2011, 33(5): 32−38.

    Li Qun, Wu Huiding, Zhang Lu. Fine-scale simulation of the seasonal variations of sea ice cover in the Prydz bay, Antarctic[J]. Haiyang Xuebao, 2011, 33(5): 32−38.
    [37]
    Heinemann G, Glaw L, Willmes S. A satellite-based climatology of wind-induced surface temperature anomalies for the Antarctic[J]. Remote Sensing, 2019, 11(13): 1539. doi: 10.3390/rs11131539
    [38]
    Uotila P, Vihma T, Pezza A B, et al. Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D7): D07109.
    [39]
    Verezemskaya P, Tilinina N, Gulev S, et al. Southern ocean mesocyclones and polar lows from manually tracked satellite mosaics[J]. Geophysical Research Letters, 2017, 44(15): 7985−7993. doi: 10.1002/2017GL074053
    [40]
    Carrasco J F, Bromwich D H. A case study of katabatic wind-forced mesoscale cyclogenesis near Byrd Glacier[J]. Antarctic Journal of the United States, 1991, 26(5): 258−261.
    [41]
    Carrasco J F, Bromwich D H. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D7): 12973−12995. doi: 10.1029/92JD02821
    [42]
    Klein T, Heinemann G. Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland[J]. Meteorological Applications, 2002, 9(4): 407−422. doi: 10.1017/S1350482702004036
    [43]
    Klein T, Heinemann G. On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region, Antarctica: Process studies using a mesoscale numerical model[J]. Meteorologische Zeitschrift, 2001, 10(2): 113−122. doi: 10.1127/0941-2948/2001/0010-0113
    [44]
    Heinemann G, Klein T. Simulations of topographically forced mesocyclones in the Weddell Sea and the Ross Sea region of Antarctica[J]. Monthly Weather Review, 2003, 131(2): 302−316. doi: 10.1175/1520-0493(2003)131<0302:SOTFMI>2.0.CO;2
    [45]
    Heinemann G, Saetra Ø. Workshop on polar lows[J]. Bulletin of the American Meteorological Society, 2013, 94(9): ES123−ES126.
    [46]
    Spengler T, Claud C, Heinemann G. Polar low workshop summary[J]. Bulletin of the American Meteorological Society, 2017, 98(6): ES139−ES142. doi: 10.1175/BAMS-D-16-0207.1
    [47]
    Heinemann G, Claud C, Spengler T. Polar low workshop[J]. Bulletin of the American Meteorological Society, 2019, 100(2): ES89−ES92. doi: 10.1175/BAMS-D-18-0103.1
    [48]
    解思梅, 郝春江, 梅山, 等. 南极普里兹湾气旋的生消发展[J]. 海洋学报, 2002, 24(6): 11−19.

    Xie Simei, Hao Chunjiang, Mei Shan, et al. Cyclone formation−development in the Antarctic Prydz Bay[J]. Haiyang Xuebao, 2002, 24(6): 11−19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (712) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return