Citation: | Liu Bijin,Zhang Zhenwei,Liu Zhongbo, et al. Simulating the evolution of a focused wave group by a Boussinesq-type model[J]. Haiyang Xuebao,2021, 43(3):31–39 doi: 10.12284/hyxb2021047 |
[1] |
Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics-B/Fluids, 2003, 22(6): 603−634. doi: 10.1016/j.euromechflu.2003.09.002
|
[2] |
Baldock T E, Swan C, Taylor P H, et al. A laboratory study of nonlinear surface waves on water[J]. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 1996, 354(1707): 649−676. doi: 10.1098/rsta.1996.0022
|
[3] |
柳淑学, 洪起庸. 三维极限波的产生方法及特性[J]. 海洋学报, 2004, 26(6): 133−142.
Liu Shuxue, Hong Qiyong. The generation method of three-dimensional focusing wave and its properties[J]. Haiyang Xuebao, 2004, 26(6): 133−142.
|
[4] |
裴玉国, 张宁川, 张运秋. 畸形波数值模拟和定点生成[J]. 海洋工程, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004
Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. Numerical simulation of freak waves and its generation at a certain location[J]. The Ocean Engineering, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004
|
[5] |
赵西增, 孙昭晨, 梁书秀. 模拟畸形波的聚焦波浪模型[J]. 力学学报, 2008, 40(4): 447−454. doi: 10.3321/j.issn:0459-1879.2008.04.003
Zhao Xizeng, Sun Zhaochen, Liang Shuxiu. Focusing models for generating freak waves[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 447−454. doi: 10.3321/j.issn:0459-1879.2008.04.003
|
[6] |
赵西增, 孙昭晨, 梁书秀. 高阶谱数值方法及其应用[J]. 船舶力学, 2008, 12(5): 685−691. doi: 10.3969/j.issn.1007-7294.2008.05.002
Zhao Xizeng, Sun Zhaochen, Liang Shuxiu. A high order spectral method and its application to nonlinear water waves[J]. Journal of Ship Mechanics, 2008, 12(5): 685−691. doi: 10.3969/j.issn.1007-7294.2008.05.002
|
[7] |
Li Jinxuan, Liu Shuxue. Focused wave properties based on a high order spectral method with a non-periodic boundary[J]. China Ocean Engineering, 2015, 29(1): 1−16. doi: 10.1007/s13344-015-0001-7
|
[8] |
Ai Congfang, Ding Weiye, Jin Sheng. A general boundary-fitted 3D non-hydrostatic model for nonlinear focusing wave groups[J]. Ocean Engineering, 2014, 89: 134−145. doi: 10.1016/j.oceaneng.2014.08.002
|
[9] |
Ning Dezhi, Teng Bin, Taylor R E, et al. Numerical simulation of non-linear regular and focused waves in an infinite water-depth[J]. Ocean Engineering, 2008, 35(8): 887−899.
|
[10] |
Li Mengyu, Zhao Xizeng, Ye Zhouteng, et al. Generation of regular and focused waves by using an internal wave maker in a CIP-based model[J]. Ocean Engineering, 2018, 167: 334−347. doi: 10.1016/j.oceaneng.2018.08.048
|
[11] |
Liu Zhongbo, Fang Kezhao. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and analysis[J]. Wave Motion, 2016, 67: 1−14. doi: 10.1016/j.wavemoti.2016.07.002
|
[12] |
Madsen P A, Bingham H B, Schäffer H A. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459(2033): 1075−1104. doi: 10.1098/rspa.2002.1067
|
[13] |
Kirby J T, Wei G, Chen Q, et al. Funwave 1.0. Fully nonlinear Boussinesq wave model documentation and user’s manual[R]. Delaware: University of Delaware, 1998.
|
[14] |
Liu Zhongbo, Fang Kezhao. Numerical verification of a two-layer Boussinesq-type model for surface gravity wave evolution[J]. Wave Motion, 2019, 85: 98−113. doi: 10.1016/j.wavemoti.2018.11.007
|
[15] |
Fuhrman D R. Numerical solutions of Boussinesq equations for fully nonlinear and extremely dispersive water waves[D]. Kgs. Lyngby: Technical University of Denmark, 2004.
|
[16] |
Liu Zhongbo, Fang Kezhao, Sun Jiawen. A multi-layer Boussinesq-type model with second-order spatial derivatives: Theoretical analysis and numerical implementation[J]. Ocean Engineering, 2019, 191: 106545. doi: 10.1016/j.oceaneng.2019.106545
|