Citation: | Pan Shaoyuan,Wang Xuefang,Tian Siquan, et al. The design of the stations of marine environmental monitoring buoys in the Chinese sturgeon nature reserve in the Changjiang River Estuary[J]. Haiyang Xuebao,2021, 43(4):55–64 doi: 10.12284/hyxb2021034 |
[1] |
Simier M, Laurent C, Ecoutin J M, et al. The Gambia River estuary: a reference point for estuarine fish assemblages studies in West Africa[J]. Estuarine Coastal and Shelf Science, 2006, 69(3/4): 615−628.
|
[2] |
罗秉征, 沈焕庭. 三峡工程与河口生态环境[M]. 北京: 科学出版社, 1994.
Luo Bingzheng, Shen Huanting. The Three Gorges Project and the Estuary Ecological Environment[M]. Beijing: Science Press, 1994.
|
[3] |
程海峰, 刘杰, 王珍珍, 等. 长江口水文监测站网选址合理性分析及优化[J]. 人民长江, 2019, 50(6): 70−75.
Cheng Haifeng, Liu Jie, Wang Zhenzhen, et al. Study on site selection and optimization of hydrologic stations network in Yangtze River Estuary[J]. Yangtze River, 2019, 50(6): 70−75.
|
[4] |
顾圣华, 李琪. 长江口水文监测站网布局研究[J]. 华东师范大学学报(自然科学版), 2015(4): 1−6.
Gu Shenghua, Li Qi. Study on layout of hydrologic network in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Science), 2015(4): 1−6.
|
[5] |
史赟荣, 晁敏, 全为民, 等. 长江口鱼类群落的多样性分析[J]. 中国水产科学, 2012, 19(6): 1051−1059.
Shi Yunrong, Chao Min, Quan Weimin, et al. Fish community diversity analyses in the Yangtze River Estuary, China[J]. Journal of Fishery Sciences of China, 2012, 19(6): 1051−1059.
|
[6] |
徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006
Xu Chao, Wang Sikai, Zhao Feng, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006
|
[7] |
李建生, 林楠, 凌建忠. 春夏季长江口邻近水域仔稚鱼种类组成和丰度的月变化[J]. 中国水产科学, 2018, 25(3): 586−594.
Li Jiansheng, Lin Nan, Ling Jianzhong. Temporal variation in the composition and abundance of fish larvae and juveniles off the Yangtze River Estuary in spring and summer[J]. Journal of Fishery Sciences of China, 2018, 25(3): 586−594.
|
[8] |
张志. 浅谈海洋资料浮标观测的地位和发展[J]. 海洋技术, 1998, 17(2): 44−46.
Zhang Zhi. A brief discussion on the status and development of ocean data buoy observation[J]. Ocean Technology, 1998, 17(2): 44−46.
|
[9] |
王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014, 35(11): 2401−2414.
Wang Bo, Li Min, Liu Shixuan, et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2401−2414.
|
[10] |
杨明远. 基于Argo数据的海洋要素场三维网格化技术研究[D]. 郑州: 战略支援部队信息工程大学, 2018.
Yang Mingyuan. Research on data griding of three-dimensional oceanic element fields based on Argo data[D]. Zhengzhou: Information Engineering University, 2018.
|
[11] |
杨建东. 丽江市水文站网布设研究[J]. 人民长江, 2017, 48(S1): 103−106.
Yang Jiandong. Study on the layout of hydrological stations in Lijiang[J]. Yangtze River, 2017, 48(S1): 103−106.
|
[12] |
李禾澍, 王栋, 王远坤. 基于信息熵的多目标水文站网优化探讨[J]. 南京大学学报(自然科学), 2017, 53(2): 326−332.
Li Heshu, Wang Dong, Wang Yuankun. Entropy based multi-objective optimization for hydrologic networks[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(2): 326−332.
|
[13] |
唐政, 单秀娟, 金显仕. 渔业资源调查采样设计优化研究进展[J]. 海洋科学, 2019, 43(4): 88−97. doi: 10.11759/hykx20180910001
Tang Zheng, Shan Xiujuan, Jin Xianshi. A review of optimization of sampling design for fishery-independent surveys[J]. Marine Sciences, 2019, 43(4): 88−97. doi: 10.11759/hykx20180910001
|
[14] |
Rago P J. Fishery independent sampling: survey techniques and data analyses[M]//Musick J A. Management Techniques for Elasmobranch Fisheries. Roma: Food & Agriculture Organization, 2005: 201−215.
|
[15] |
Xu Binduo, Ren Yiping, Chen Yong, et al. Optimization of stratification scheme for a fishery-independent survey with multiple objectives[J]. Acta Oceanologica Sinica, 2015, 34(12): 154−169.
|
[16] |
Smith S J, Tremblay M J. Fishery-independent trap surveys of lobsters (Homarus americanus): design considerations[J]. Fisheries Research, 2003, 62(1): 65−75.
|
[17] |
Zhao Jing, Cao Jie, Tian Siquan, et al. Evaluating sampling designs for demersal fish communities[J]. Sustainability, 2018, 10(8): 1−23.
|
[18] |
Cochran W G. Sampling Techniques[M]. 3rd ed. New York: John Wiley & Sons, 1977.
|
[19] |
韩青鹏, 单秀娟, 金显仕, 等. 多目标资源调查站位优化设计—以渤海为例[J]. 渔业科学进展, 2019, 40(1): 1−11.
Han Qingpeng, Shan Xiujuan, Jin Xianshi, et al. Study on optimizing sampling design of multi-objective fishery-independent surveys: a case study in the Bohai Sea[J]. Progress in Fishery Sciences, 2019, 40(1): 1−11.
|
[20] |
赵静, 章守宇, 林军, 等. 不同采样设计评估鱼类群落效果比较[J]. 应用生态学报, 2014, 25(4): 1181−1187.
Zhao Jing, Zhang Shouyu, Lin Jun, et al. A comparative study of different sampling designs in fish community estimation[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1181−1187.
|
[21] |
McNeish D M, Harring J R. Clustered data with small sample sizes: comparing the performance of model-based and design-based approaches[J]. Communications in Statistics-Simulation and Computation, 2017, 46(2): 855−869.
|
[22] |
Brus D J, De Gruijter J J. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with Discussion)[J]. Geoderma, 1997, 80(1/2): 1−44.
|
[23] |
Rivoirard J, Wieland K. Correcting for the effect of daylight in abundance estimation of juvenile haddock (Melanogrammus aeglefinus) in the north sea: an application of Kriging with external drift[J]. ICES Journal of Marine Science, 2001, 58(6): 1272−1285.
|
[24] |
Chen Yunlong, Shan Xiujuan, Jin Xianshi, et al. A comparative study of spatial interpolation methods for determining fishery resources density in the Yellow Sea[J]. Acta Oceanologica Sinica, 2016, 35(12): 65−72.
|
[25] |
Li Bai, Cao Jie, Guan Lisha, et al. Estimating spatial non-stationary environmental effects on the distribution of species: a case study from American lobster in the Gulf of Maine[J]. ICES Journal of Marine Science, 2018, 75(4): 1473−1482.
|
[26] |
Appice A, Malerba D. Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering[J]. Data Mining and Knowledge discovery, 2014, 28(5/6): 1266−1313.
|
[27] |
Zimmerman D, Pavlik C, Ruggles A, et al. An experimental comparison of ordinary and universal kriging and inverse distance weighting[J]. Mathematical Geology, 1999, 31(4): 375−390.
|
[28] |
Mueller T G, Pusuluri N B, Mathias K K, et al. Map quality for ordinary kriging and inverse distance weighted interpolation[J]. Soil Science Society of America Journal, 2004, 68(6): 2042−2047.
|
[29] |
Ding Qian, Wang Yong, Zhuang Dafang. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions[J]. Journal of Environmental Management, 2018, 212: 23−31.
|
[30] |
Isaaks E H, Srivastava R M. Spatial continuity measures for probabilistic and deterministic geostatistics[J]. Mathematical Geology, 1988, 20(4): 313−341.
|
[31] |
Stow C A, Jolliff J, Mcgillicuddy Jr D J, et al. Skill assessment for coupled biological/physical models of marine systems[J]. Journal of Marine Systems, 2009, 76(1/2): 4−15.
|
[32] |
沈焕庭, 茅志昌, 朱建荣. 长江河口盐水入侵[M]. 北京: 海洋出版社, 2003.
Shen Huanting, Mao Zhichang, Zhu Jianrong. Saltwater Intrusion in the Changjiang Estuary[M]. Beijing: China Ocean Press, 2003.
|
[33] |
Neyman J. On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection[J]. Journal of the Royal Statistical Society, 1934, 97(4): 558−625.
|
[34] |
Chen Yong. A Monte Carlo study on impacts of the size of subsample catch on estimation of fish stock parameters[J]. Fisheries Research, 1996, 26(3/4): 207−223.
|
[35] |
Nalder I A, Wein R W. Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest[J]. Agricultural and Forest Meteorology, 1998, 92(4): 211−225.
|
[36] |
Goovaerts P. Geostatistics for Natural Resources Evaluation[M]. New York: Oxford University Press, 1997: 483.
|
[37] |
Wang Jing, Xu Binduo, Zhang Chongliang, et al. Evaluation of alternative stratifications for a stratified random fishery-independent survey[J]. Fisheries Research, 2018, 207: 150−159.
|
[38] |
孔亚珍, 贺松林, 丁平兴, 等. 长江口盐度的时空变化特征及其指示意义[J]. 海洋学报, 2004, 26(4): 9−18.
Kong Yazhen, He Songlin, Ding Pingxing, et al. Characteristics of temporal and spatial variation of salinity and their indicating significance in the Changjiang Estuary[J]. Haiyang Xuebao, 2004, 26(4): 9−18.
|
[39] |
吴晓丹, 宋金明, 李学刚. 长江口邻近海域水团特征与影响范围的季节变化[J]. 海洋科学, 2014, 38(12): 110−119. doi: 10.11759/hykx20140305001
Wu Xiaodan, Song Jinming, Li Xuegang. Seasonal variation of water mass characteristic and influence area in the Yangtze Estuary and its adjacent waters[J]. Marine Sciences, 2014, 38(12): 110−119. doi: 10.11759/hykx20140305001
|
[40] |
Liu Yong, Chen Yong, Cheng Jiahua. A comparative study of optimization methods and conventional methods for sampling design in fishery-independent surveys[J]. ICES Journal of Marine Science, 2009, 66(9): 1873−1882.
|
[41] |
王劲峰, 姜成晟, 李连发, 等. 空间抽样与统计推断[M]. 北京: 科学出版社, 2009.
Wang Jinfeng, Jiang Chengsheng, Li Lianfa, et al. Spatial Sampling and Statistical Inference[M]. Beijing: Science Press, 2009.
|
[42] |
Simmonds E J, Fryer R J. Which are better, random or systematic acoustic surveys? A simulation using North Sea herring as an example[J]. Journal of Marine Science, 1996, 53(1): 39−50.
|
[43] |
范海梅, 纪焕红, 刘鹏霞, 等. 海洋环境监测站位优化方法与应用[J]. 上海环境科学, 2019, 38(3): 115−119.
Fan Haimei, Ji Huanhong, Liu Pengxia, et al. The optimisation method for marine environmental monitoring siting and its application[J]. Shanghai Environmental Sciences, 2019, 38(3): 115−119.
|
[44] |
范海梅, 徐韧, 李丙瑞, 等. 基于关键要素分布特征的长江口及其邻近海域分区研究[J]. 海洋学研究, 2011, 29(4): 50−56. doi: 10.3969/j.issn.1001-909X.2011.04.007
Fan Haimei, Xu Ren, Li Bingrui, et al. Partition study based on the distributions of key indicators in Changjiang River Estuary and its adjacent sea area[J]. Journal of Marine Sciences, 2011, 29(4): 50−56. doi: 10.3969/j.issn.1001-909X.2011.04.007
|