Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Zhen Zhanghe,Li Wenjun,Lin Hanzhi, et al. Algal light-harvesting system: Linkage of structures and functions by using structural biology[J]. Haiyang Xuebao,2021, 43(2):126–138 doi: 10.12284/hyxb2021024
Citation: Zhen Zhanghe,Li Wenjun,Lin Hanzhi, et al. Algal light-harvesting system: Linkage of structures and functions by using structural biology[J]. Haiyang Xuebao,2021, 43(2):126–138 doi: 10.12284/hyxb2021024

Algal light-harvesting system: Linkage of structures and functions by using structural biology

doi: 10.12284/hyxb2021024
  • Received Date: 2020-05-23
  • Rev Recd Date: 2020-11-06
  • Available Online: 2021-01-25
  • Publish Date: 2021-03-02
  • Algae are general term of a large group of photoautotrophic aquatic sporophytes. Along with the long earth history, the algal light-harvesting antenna has evolved special structure and function, to adapt to low-light underwater environment. Since the algal light-harvesting antennas were first discovered 70 years ago, the progress of structural analysis can be divided into four stages. The first stage was from 1950 to 1980, and effects were focused on studying the structural composition of light-harvesting antenna through biochemical and spectral techniques. The second stage was from 1980 to the present, and X-ray crystallization becomes a primary tool to study the partial fine-structure of the complete complex. The third stage was from 1980 to 2010. In this stage, complete contour structure can be studied by using electron microscope (EM). The fourth stage is from 2010 to the present, and the use of cryo-EM technology to studied intact fine-structure has brought the blowout period of structural analysis in recent year. With the rapid development of cryo-EM technology, a variety of complete fine-structures of algal light-harvesting antenna complexes have been analyzed, including cyanobacteria, red algae, green algae, and diatoms. Specifically, in 2019, multiple super-molecular complex structures of algal light-harvesting antenna were resolved. This breakthrough provides us valuable structure information for the study of energy transfer and the unified relationship between structure and function. However, the synthetic understanding of the relationship between the structure, function, environment, and applications of algal light-harvesting antennas is still preliminary, compared to the huge demand of solar energy utilization from bio-materials. Therefore, further research on the light adaptability of light-harvesting proteins has become the focus of the future, and will provide a sufficient scientific basis for the application of algal light-harvesting antenna proteins in the field of photoelectric devices.
  • loading
  • [1]
    McFadden G I. Primary and secondary endosymbiosis and the origin of plastids[J]. Journal of Phycology, 2001, 37(6): 951−959. doi: 10.1046/j.1529-8817.2001.01126.x
    [2]
    McFadden G I. Endosymbiosis and evolution of the plant cell[J]. Current Opinion in Plant Biology, 1999, 2(6): 513−519. doi: 10.1016/S1369-5266(99)00025-4
    [3]
    王寅初, 秦松. 真核藻类进化的研究进展与存在问题[J]. 生物学杂志, 2015, 32(3): 70−72. doi: 10.3969/j.issn.2095-1736.2015.03.070

    Wang Yinchu, Qin Song. Evolution of eukaryotic algae: a mini-review of progress and problems[J]. Journal of Biology, 2015, 32(3): 70−72. doi: 10.3969/j.issn.2095-1736.2015.03.070
    [4]
    Seckbach J. Enigmatic Microorganisms and Life in Extreme Environments[M]. Netherlands: Springer, 1999: 5775.
    [5]
    Neilson J A D, Durnford D G. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes[J]. Photosynthesis Research, 2010, 106(1/2): 57−71.
    [6]
    Glazer A N. Light guides: Directional energy transfer in a photosynthetic antenna[J]. The Journal of Biological Chemistry, 1989, 264(1): 1−4.
    [7]
    Krawczyk S, Krupa Z, Maksymiec W. Stark spectra of chlorophylls and carotenoids in antenna pigment-proteins LHC-II and CP-II[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1993, 1143(3): 273−281. doi: 10.1016/0005-2728(93)90198-O
    [8]
    Büchel C. Fucoxanthin-chlorophyll-proteins and non-photochemical fluorescence quenching of diatoms[M] //Demmig-Adams B, Garab G, Adams III W, et al. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer, 2014: 259−275.
    [9]
    Mirkovic T, Ostroumov E E, Anna J M, et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 2017, 117(2): 249−293. doi: 10.1021/acs.chemrev.6b00002
    [10]
    Onishi A, Aikawa S, Kondo A, et al. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence[J]. Photosynthesis Research, 2015, 125(1/2): 191−199.
    [11]
    Li Wenjun, Su Hainan, Pu Yang, et al. Phycobiliproteins: Molecular structure, production, applications, and prospects[J]. Biotechnology Advances, 2019, 37(2): 340−353. doi: 10.1016/j.biotechadv.2019.01.008
    [12]
    Nelson N. Plant photosystem I—the most efficient nano-photochemical machine[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(3): 1709−1713. doi: 10.1166/jnn.2009.SI01
    [13]
    马建飞, 林瀚智, 秦松, 等. 蓝藻藻胆体的体外组装研究进展[J]. 中国科学: 生命科学, 2016, 46(9): 1054−1061. doi: 10.1360/N052016-00067

    Ma Jianfei, Lin Hanzhi, Qin Song. Advances in cyanobacterial phycobilisome assembling in vitro[J]. Scientia Sinica Vitae, 2016, 46(9): 1054−1061. doi: 10.1360/N052016-00067
    [14]
    Pu Yang, Zhu Guoliang, Ge Baosheng, et al. Photocurrent generation by recombinant allophycocyanin trimer multilayer on TiO2 electrode[J]. Chinese Chemical Letters, 2013, 24(2): 163−166. doi: 10.1016/j.cclet.2012.12.011
    [15]
    Nagata M, Amano M, Joke T, et al. Immobilization and photocurrent activity of a light-harvesting antenna complex II, LHCII, isolated from a plant on electrodes[J]. ACS Macro Letters, 2012, 1(2): 296−299. doi: 10.1021/mz200163e
    [16]
    马建飞. 藻胆体的冷冻电镜三维重构及应用——以海洋红藻Griffithsia pacifica和嗜热蓝薄Thermosynechococcus vulcanus藻胆体为例[D]. 烟台: 中国科学院烟台海岸带研究所, 2015.

    Ma Jianfei. 3-D reconstructions of phycobilisomes by cryo-electron microscopy and application—taking examples of phycobilisomes from the marine red alga Griffithsia pacifica and the thermophilic cyanobacterium Thermosynechococcus vulcanus[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2015.
    [17]
    Ma Jianfei, Chen Huaxin, Qin Song, et al. Applications of natural and artificial Phycobiliproteins in solar cells[J]. Current Biotechnology, 2015, 4(3): 275−281. doi: 10.2174/2211550104666151016203528
    [18]
    Thornber J P, Sokoloff M K. Photochemical reactions of purple bacteria as revealed by studies of three spectrally different carotenobacteriochlorophyll-protein complexes isolated from Chromatium, strain D[J]. Biochemistry, 1970, 9(13): 2688−2698. doi: 10.1021/bi00815a017
    [19]
    Jones R F, Blinks L R. The amino acid constituents of the phycobilin chromoproteins of the red alga Porphyra[J]. The Biological Bulletin, 1957, 112(3): 363−370. doi: 10.2307/1539129
    [20]
    Haxo F, O'hEocha C, Norris P. Comparative studies of chromatographically separated phycoerythrins and phycocyanins[J]. Archives of Biochemistry and Biophysics, 1955, 54(1): 162−173. doi: 10.1016/0003-9861(55)90019-9
    [21]
    Gantt E, Lipschultz C A. Phycobilisomes of Porphyridium cruentum. I. Isolation[J]. The Journal of Cell Biology, 1972, 54(2): 313−324. doi: 10.1083/jcb.54.2.313
    [22]
    Zhang Jun, Ma Jianfei, Liu Desheng, et al. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678): 57−63. doi: 10.1038/nature24278
    [23]
    Arteni A A, Ajlani G, Boekema E J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2009, 1787(4): 272−279. doi: 10.1016/j.bbabio.2009.01.009
    [24]
    Arteni A A, Liu Luning, Aartsma T J, et al. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum[J]. Photosynthesis Research, 2008, 95(2/3): 169−174. doi: 10.1007/s11120-007-9264-z
    [25]
    Yi Zhiwei, Huang Hui, Kuang Tingyun, et al. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy[J]. FEBS Letters, 2005, 579(17): 3569−3573. doi: 10.1016/j.febslet.2005.05.033
    [26]
    Gingrich J C, Lundell D J, Glazer A N. Core substructure in cyanobacterial phycobilisomes[J]. Journal of Cellular Biochemistry, 1983, 22(1): 1−14. doi: 10.1002/jcb.240220102
    [27]
    Myers J, Kratz W A. Relations between pigment content and photosynthetic characteristics in a blue-green alga[J]. The Journal of General Physiology, 1955, 39(1): 11−22. doi: 10.1085/jgp.39.1.11
    [28]
    Yamanaka G, Glazer A N. Dynamic aspects of phycobilisome structure[J]. Archives of Microbiology, 1980, 124(1): 39−47. doi: 10.1007/BF00407026
    [29]
    Glazer A N. Phycobilisomes[M]//Methods in Enzymology. Amsterdam: Elsevier, 1988: 304−312.
    [30]
    Robinson C V, Sali A, Baumeister W. The molecular sociology of the cell[J]. Nature, 2007, 450(7172): 973−982. doi: 10.1038/nature06523
    [31]
    Hofmann E, Wrench P M, Sharples F P, et al. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae[J]. Science, 1996, 272(5269): 1788−1791. doi: 10.1126/science.272.5269.1788
    [32]
    Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, et al. PH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum[J]. The FEBS Journal, 2012, 279(19): 3680−3691. doi: 10.1111/j.1742-4658.2012.08730.x
    [33]
    David L, Marx A, Adir N. High-resolution crystal structures of trimeric and rod phycocyanin[J]. Journal of Molecular Biology, 2011, 405(1): 201−213. doi: 10.1016/j.jmb.2010.10.036
    [34]
    Wilk K E, Harrop S J, Jankova L, et al. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63—A resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 8901−8906. doi: 10.1073/pnas.96.16.8901
    [35]
    Doust A B, Marai C N J, Harrop S J, et al. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy[J]. Journal of Molecular Biology, 2004, 344(1): 135−153. doi: 10.1016/j.jmb.2004.09.044
    [36]
    Wang Wenda, Yu Longjiang, Xu Caizhe, et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms[J]. Science, 2019, 363(6427): eaav0365. doi: 10.1126/science.aav0365
    [37]
    Liu Zhenfeng, Yan Hanchi, Wang Kebin, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution[J]. Nature, 2004, 428(6980): 287−292. doi: 10.1038/nature02373
    [38]
    Standfuss J, Van Scheltinga A C T, Lamborghini M, et al. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution[J]. The EMBO Journal, 2005, 24(5): 919−928. doi: 10.1038/sj.emboj.7600585
    [39]
    Jordan P, Fromme P, Witt H T, et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution[J]. Nature, 2001, 411(6840): 909−917. doi: 10.1038/35082000
    [40]
    Zouni A, Witt H T, Kern J, et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution[J]. Nature, 2001, 409(6821): 739−743. doi: 10.1038/35055589
    [41]
    Harrop S J, Wilk K E, Dinshaw R, et al. Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): E2666−E2675. doi: 10.1073/pnas.1402538111
    [42]
    Ma Jianfei, You Xin, Sun Shan, et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome[J]. Nature, 2020, 579(7797): 146−151. doi: 10.1038/s41586-020-2020-7
    [43]
    Katoh T, Mimuro M, Takaichi S. Light-harvesting particles isolated from a brown alga, Dictyota dichotoma: a supramolecular assembly of fucoxanthin-chlorophyll-protein complexes[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1989, 976(2/3): 233−240.
    [44]
    Steinbeck J, Ross I L, Rothnagel R, et al. Structure of a PSI-LHCI-cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10517−10522. doi: 10.1073/pnas.1809973115
    [45]
    Sheng Xin, Watanabe A, Li Anjie, et al. Structural insight into light harvesting for photosystem II in green algae[J]. Nature Plants, 2019, 5(12): 1320−1330. doi: 10.1038/s41477-019-0543-4
    [46]
    Schmidt M, Krasselt A, Reuter W. Local protein flexibility as a prerequisite for reversible chromophore isomerization in α-phycoerythrocyanin[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764(1): 55−62. doi: 10.1016/j.bbapap.2005.10.022
    [47]
    Andrizhiyevskaya E G, Schwabe T M E, Germano M, et al. Spectroscopic properties of PSI–IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2002, 1556(2/3): 265−272.
    [48]
    Burnap R L, Troyan T, Sherman L A. The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43′) is encoded by the isiA gene[J]. Plant Physiology, 1993, 103(3): 893−902. doi: 10.1104/pp.103.3.893
    [49]
    Ritter S, Hiller R G, Wrench P M, et al. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-Å resolution[J]. Journal of Structural Biology, 1999, 126(2): 86−97. doi: 10.1006/jsbi.1999.4106
    [50]
    Gantt E. Pigment protein complexes and the concept of the photosynthetic unit: chlorophyll complexes and phycobilisomes[J]. Photosynthesis Research, 1996, 48(1/2): 47−53.
    [51]
    Wolfe G R, Cunningham F X, Durnfordt D, et al. Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation[J]. Nature, 1994, 367(6463): 566−568. doi: 10.1038/367566a0
    [52]
    Bishop N I. The β, ϵ-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus[J]. Journal of Photochemistry and Photobiology B: Biology, 1996, 36(3): 279−283. doi: 10.1016/S1011-1344(96)07381-2
    [53]
    Fawley M W, Stewart K D, Mattox K R. The novel light-harvesting pigment-protein complex of Mantoniella squamata (Chlorophyta): phylogenetic implications[J]. Journal of Molecular Evolution, 1986, 23(2): 168−176. doi: 10.1007/BF02099911
    [54]
    Harrison M A, Melis A. Organization and stability of polypeptides associated with the chlorophyll a-b light-harvesting complex of photosystem-II[J]. Plant and Cell Physiology, 1992, 33(5): 627−637.
    [55]
    Bathke L, Rhiel E, Krumbein W E, et al. Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte rhodomonas sp. : evidence for a photosystem I specific antenna[J]. Plant Biology, 1999, 1(5): 516−523. doi: 10.1111/j.1438-8677.1999.tb00777.x
    [56]
    Gundermann K, Schmidt M, Weisheit W, et al. Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(3): 303−310. doi: 10.1016/j.bbabio.2012.10.017
    [57]
    Eppard M, Rhiel E. The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family[J]. Molecular and General Genetics MGG, 1998, 260(4): 335−345. doi: 10.1007/s004380050902
    [58]
    Caron L, Remy R, Berkaloff C. Polypeptide composition of light-harvesting complexes from some brown algae and diatoms[J]. FEBS Letters, 1988, 229(1): 11−15. doi: 10.1016/0014-5793(88)80787-7
    [59]
    Cock J M, Sterck L, Rouzé P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae[J]. Nature, 2010, 465(7298): 617−621. doi: 10.1038/nature09016
    [60]
    Durnford D G, Deane J A, Tan S, et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution[J]. Journal of Molecular Evolution, 1999, 48(1): 59−68. doi: 10.1007/PL00006445
    [61]
    Boldt L, Yellowlees D, Leggat W. Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate Symbiodinium sp[J]. PLoS One, 2012, 7(10): e47456. doi: 10.1371/journal.pone.0047456
    [62]
    Büchel C, Wilhelm C. Isolation and characterization of a photosystem I-associated antenna (LHC I) and a photosystem I—core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae)[J]. Journal of Photochemistry and Photobiology B: Biology, 1993, 20(2/3): 87−93.
    [63]
    Lichtlé C, Arsalane W, Duval J C, et al. Characterization of the light-harvesting complex of Giraudyopsis stellifer (chrysophyceae) and effects of light stress[J]. Journal of Phycology, 1995, 31(3): 380−387. doi: 10.1111/j.0022-3646.1995.00380.x
    [64]
    Wiedemann I, Wilhelm C, Wild A. Isolation of chlorophyll-protein complexes and quantification of electron transport components in Synura petersenii and Tribonema aequale[J]. Photosynthesis Research, 1983, 4(1): 317−329. doi: 10.1007/BF00041829
    [65]
    Simpson D J, Knoetzel J. Light-harvesting complexes of plants and algae: introduction, survey and nomenclature[M]//Ort D R, Yocum C F, Heichel I F. Oxygenic Photosynthesis: the Light Reactions. Dordrecht: Springer, 1996: 493−506.
    [66]
    Jeffrey S W. Algal pigment systems[M]//Falkowski P G. Primary Productivity in the Sea. Boston, MA: Springer, 1980: 33−58.
    [67]
    Schagerl M, Pichler C, Donabaum K. Patterns of major photosynthetic pigments in freshwater algae. 2. Dinophyta, Euglenophyta, Chlorophyceae and Charales[J]. Annales de Limnologie-International Journal of Limnology, 2003, 39(1): 49−62. doi: 10.1051/limn/2003005
    [68]
    Wildman R B, Bowen C C. Phycobilisomes in blue-green algae[J]. Journal of Bacteriology, 1974, 117(2): 866−881. doi: 10.1128/JB.117.2.866-881.1974
    [69]
    Zhang Yuzhong, Chen Xiulan, Zhou Baicheng, et al. A new model of phycobilisome in Spirulina platensis[J]. Science in China Series C: Life Sciences, 1999, 42(1): 74−79. doi: 10.1007/BF02881751
    [70]
    Liu Luning, Aartsma T J, Thomas J C, et al. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns[J]. The Journal of Biological Chemistry, 2008, 283(50): 34946−34953. doi: 10.1074/jbc.M805114200
    [71]
    Gardian Z, Tichý J, Vácha F. Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile[J]. Photosynthesis Research, 2011, 108(1): 25. doi: 10.1007/s11120-011-9647-z
    [72]
    Kereïche S, Kouřil R, Oostergetel G T, et al. Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008, 1777(9): 1122−1128. doi: 10.1016/j.bbabio.2008.04.045
    [73]
    Bai Xiaochen, McMullan G, Scheres S H W. How cryo-EM is revolutionizing structural biology[J]. Trends in Biochemical Sciences, 2015, 40(1): 49−57. doi: 10.1016/j.tibs.2014.10.005
    [74]
    Pi Xiong, Tian Lirong, Dai Huaien, et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4423−4428. doi: 10.1073/pnas.1722482115
    [75]
    Su Xiaodong, Ma Jun, Pan Xiaowei, et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex[J]. Nature Plants, 2019, 5(3): 273−281. doi: 10.1038/s41477-019-0380-5
    [76]
    Toporik H, Li Jin, Williams D, et al. The structure of the stress-induced photosystem I-IsiA antenna supercomplex[J]. Nature Structural & Molecular Biology, 2019, 26(6): 443−449.
    [77]
    Shen Liangliang, Huang Zihui, Chang Shenghai, et al. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 21246−21255. doi: 10.1073/pnas.1912462116
    [78]
    Nagao R, Kato K, Suzuki T, et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex[J]. Nature Plants, 2019, 5(8): 890−901. doi: 10.1038/s41477-019-0477-x
    [79]
    Pagliano C, Nield J, Marsano F, et al. Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(9): 1454−1462. doi: 10.1016/j.bbabio.2013.11.004
    [80]
    Bibby T S, Nield J, Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria[J]. Nature, 2001, 412(6848): 743−745. doi: 10.1038/35089098
    [81]
    Watanabe M, Semchonok D A, Webber-Birungi M T, et al. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(7): 2512−2517. doi: 10.1073/pnas.1320599111
    [82]
    Chang Leifu, Liu Xianwei, Li Yanbing, et al. Structural organization of an intact phycobilisome and its association with photosystem II[J]. Cell Research, 2015, 25(6): 726−737. doi: 10.1038/cr.2015.59
    [83]
    Liu Haijun, Zhang Hao, Niedzwiedzki D M, et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria[J]. Science, 2013, 342(6162): 1104−1107. doi: 10.1126/science.1242321
    [84]
    Qin Xiaochun, Pi Xiong, Wang Wenda, et al. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits[J]. Nature Plants, 2019, 5(3): 263−272. doi: 10.1038/s41477-019-0379-y
    [85]
    Wei Xuepeng, Su Xiaodong, Cao Peng, et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution[J]. Nature, 2016, 534(7605): 69−74. doi: 10.1038/nature18020
    [86]
    Su Xiaodong, Ma Jun, Wei Xuepeng, et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex[J]. Science, 2017, 357(6353): 815−820. doi: 10.1126/science.aan0327
    [87]
    Ikeda Y, Yamagishi A, Komura M, et al. Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(4): 529−539. doi: 10.1016/j.bbabio.2013.02.003
    [88]
    Nagao R, Ueno Y, Akita F, et al. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis[J]. Photosynthesis Research, 2019, 140(2): 141−149. doi: 10.1007/s11120-018-0576-y
    [89]
    Pi Xiong, Zhao Songhao, Wang Wenda, et al. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex[J]. Science, 2019, 365(6452): eaax4406. doi: 10.1126/science.aax4406
    [90]
    Zhao Fangqing, Qin Song. Evolutionary analysis of phycobiliproteins: implications for their structural and functional relationships[J]. Journal of molecular evolution, 2006, 63(3): 330−340. doi: 10.1007/s00239-005-0026-2
    [91]
    Zhang J M, Shiu Y J, Hayashi M, et al. Investigations of ultrafast exciton dynamics in allophycocyanin trimer[J]. The Journal of Physical Chemistry A, 2001, 105(39): 8878−8891. doi: 10.1021/jp011266a
    [92]
    Fleming G R, Van Grondelle R. Femtosecond spectroscopy of photosynthetic light-harvesting systems[J]. Current Opinion in Structural Biology, 1997, 7(5): 738−748. doi: 10.1016/S0959-440X(97)80086-3
    [93]
    Akimoto S, Yamazaki I, Murakami A, et al. Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile[J]. Chemical Physics Letters, 2004, 390(1/3): 45−49.
    [94]
    Hashimoto H, Sugisaki M, Yoshizawa M. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(1): 69−78. doi: 10.1016/j.bbabio.2014.09.001
    [95]
    Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature[J]. Nature, 2010, 463(7281): 644−647. doi: 10.1038/nature08811
    [96]
    Dean J C, Mirkovic T, Toa Z S D, et al. Vibronic enhancement of algae light harvesting[J]. Chem, 2016, 1(6): 858−872. doi: 10.1016/j.chempr.2016.11.002
    [97]
    Goss R, Lepetit B. Biodiversity of NPQ[J]. Journal of Plant Physiology, 2015, 172: 13−32. doi: 10.1016/j.jplph.2014.03.004
    [98]
    Pan Xiaowei, Ma Jun, Su Xiaodong, et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II[J]. Science, 2018, 360(6393): 1109−1113. doi: 10.1126/science.aat1156
    [99]
    Olaya-Castro A, Scholes G D. Energy transfer from Förster-Dexter theory to quantum coherent light-harvesting[J]. International Reviews in Physical Chemistry, 2011, 30(1): 49−77. doi: 10.1080/0144235X.2010.537060
    [100]
    冷轩, 王专, 翁羽翔. 光合捕光天线系统的进化模式与能量传递[J]. 植物生理学报, 2016, 52(11): 1681−1691.

    Leng Xuan, Wang Zhuan, Weng Yuxiang. Evolution of photosynthetic light harvesting antenna systems and energy transfer efficiency[J]. Plant Physiology Journal, 2016, 52(11): 1681−1691.
    [101]
    Cao Jianshu, Cogdell R J, Coker D F, et al. Quantum biology revisited[J]. Science Advances, 2020, 6(14): eaaz4888. doi: 10.1126/sciadv.aaz4888
    [102]
    Ramanan C, Ferretti M, Van Roon H, et al. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII[J]. Physical Chemistry Chemical Physics, 2017, 19(34): 22877−22886. doi: 10.1039/C7CP03038J
    [103]
    Kirilovsky D. The photoactive orange carotenoid protein and photoprotection in cyanobacteria[M]//Hallenbeck P. Recent Advances in Phototrophic Prokaryotes. New York, NY: Springer, 2010: 139−159.
    [104]
    McConnell M D, Koop R, Vasil'ev S, et al. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria: a structure-based model for the light state transition[J]. Plant Physiology, 2002, 130(3): 1201−1212. doi: 10.1104/pp.009845
    [105]
    Adir N, Lerner N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes[J]. The Journal of Biological Chemistry, 2003, 278(28): 25926−25932. doi: 10.1074/jbc.M302838200
    [106]
    Lüder U H, Knoetzel J, Wiencke C. Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae)[J]. Physiologia Plantarum, 2001, 112(4): 572−581. doi: 10.1034/j.1399-3054.2001.1120416.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (526) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return