留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浅地层剖面的海底浅表层沉积物物理性质参数反演技术研究——以渤海海底管线路由区为例

黄必桂 李家钢 周庆杰 李西双 刘乐军 高珊 周航 张承艺

黄必桂,李家钢,周庆杰,等. 基于浅地层剖面的海底浅表层沉积物物理性质参数反演技术研究——以渤海海底管线路由区为例[J]. 海洋学报,2022,44(x):1–9
引用本文: 黄必桂,李家钢,周庆杰,等. 基于浅地层剖面的海底浅表层沉积物物理性质参数反演技术研究——以渤海海底管线路由区为例[J]. 海洋学报,2022,44(x):1–9
Huang Bigui,Li Jiagang,Zhou Qingjie, et al. Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile- Taking the Bohai Sea submarine pipeline route as an example[J]. Haiyang Xuebao,2022, 44(x):1–9
Citation: Huang Bigui,Li Jiagang,Zhou Qingjie, et al. Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile- Taking the Bohai Sea submarine pipeline route as an example[J]. Haiyang Xuebao,2022, 44(x):1–9

基于浅地层剖面的海底浅表层沉积物物理性质参数反演技术研究——以渤海海底管线路由区为例

基金项目: 基于地球物理数据的工程地质研究(YXKY-2018-ZY-10);中央级公益性科研院所基本科研业务费专项资金 (2021Q03)
详细信息
    作者简介:

    黄必桂(1984-),男,高级工程师,主要从事海洋工程环境条件及设计标准方面的研究。E-mail: huangbg3@cnooc.com.cn

    通讯作者:

    周庆杰(1989-),男,工程师,主要从事海洋地球物理数据处理及地质灾害风险评估等研究。E-mail: zhouqj@fio.org.cn

Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile- Taking the Bohai Sea submarine pipeline route as an example

  • 摘要: 海底浅表层(小于1 m)沉积物的物理性质,如粒度、孔隙度、密度等是海洋沉积学研究和海洋工程地质分析的重要内容,而对于这些物理性质的获取目前主要基于有限的海底取样或原位测试。浅地层剖面是基于声学信号(频率几千赫兹)在沉积物中的传播得到可反映沉积地层结构的数据,其中的一些声学参数,如海底反射系数、波阻抗等与沉积物物理性质密切相关。如何充分而有效的利用浅地层剖面资料,反演得到剖面覆盖区海底浅表层沉积物的物理性质参数,极具科学意义和应用价值,且基于声学属性反演沉积物物理性质是当前研究的热点。为此,本文基于渤海LD16-3CEPA至LD10-1PAPD路由段的浅地层剖面数据和海底表层沉积物的实测物理参数,利用Biot-Stoll模型建立研究区海底反射系数和沉积物物理性质之间的关系,并基于浅地层剖面数据计算得到的海底反射系数,反演了研究区海底浅表层沉积物的孔隙度、密度、平均粒径等物理性质参数。其中反演的孔隙度、密度、平均粒径与实测孔隙度、密度、平均粒径基本相符,偏差度基本都在20%的偏差范围内,表明该反演方法在该区的应用是可行的。
  • 图  1  研究区位置及浅剖与取样站位分布

    Fig.  1  Location of study area and distribution of sub-bottom profiles and sampling station

    图  2  浅地层剖面频谱分析特征

    Fig.  2  Spectral analysis feature of sub-bottom profile

    图  3  对数分解法求取子波的过程图解

    Fig.  3  Process diagram of wavelet extraction by logarithmic decomposition method

    图  4  典型浅地层剖面图及该剖面计算得到的海底反射系数

    Fig.  4  Typical sub-bottom profile and the calculated seabed reflection coefficients

    图  5  海底反射系数与沉积物物理性质的相关关系

    a. 纵波速度随频率的变化;b. 反射系数随孔隙度的变化(f=5 kHz);c.反射系数随密度的变化(f=5 kHz);d.反射系数随平均粒径的变化(f=5 kHz)

    Fig.  5  Correlation between seafloor reflection coefficient and sediment physical properties

    a. Variation of p-wave velocity with frequency; b. variation of reflection coefficient with porosity ( f = 5 kHz); c. variation of reflection coefficient with density ( f = 5 kHz); d. variation of reflection coefficient with mean grain size ( f = 5 kHz)

    图  6  海底表层沉积物物性反演结果与取样测试结果对比

    a. 平均粒径;b. 海底反射系数;c. 孔隙度;d. 密度;图中坐标为TM投影,中央经线120°E

    Fig.  6  Comparison between inversion results and sampling test results of seafloor surface sediment physical properties

    a. Mean grain size; b. seafloor reflection coefficient; c. porosity; d. density; the coordinates in the figure are TM projection and the central meridian is 120°E

    图  7  反演结果与样品测试结果对比

    Fig.  7  Comparison between inversion results and sample test results

    表  1  海底浅表层沉积物物理性质

    Tab.  1  Physical properties of seabed shallow surface sediments

    站位经度纬度密度/(g·m-3)平均粒径/ɸ孔隙度
    PL3120.464 40°E39.492 31°N1 636.736.560.68
    PL4120.476 53°E39.518 09°N1 582.656.940.70
    PL5120.493 21°E39.537 46°N1 575.51
    PL6120.500 19°E39.568 55°N1 468.377.490.73
    PL7120.513 81°E39.593 29°N1 597.967.250.72
    PL8120.524 32°E39.619 35°N1 536.737.060.71
    PL9120.536 22°E39.644 64°N1 657.147.480.73
    PL10120.546 00°E39.661 17°N1 674.496.780.69
    PL11120.554 16°E39.678 54°N1 601.027.080.71
    PL12120.560 21°E39.695 24°N1 595.926.810.70
    PL13120.570 56°E39.716 87°N1 728.576.640.69
    PL14120.575 45°E39.723 59°N1 771.436.390.67
    PL15120.579 86°E39.732 96°N1 679.596.080.66
    PL16120.590 03°E39.754 23°N1 682.656.270.67
    PL17120.597 98°E39.771 02°N1 628.576.230.67
    下载: 导出CSV

    表  2  Biot-Stoll模型输入的沉积物物理参数

    Tab.  2  The input sediment physical parameters of the Biot-Stoll model

    参数Biot-Stoll模型取值
    颗粒密度$ {\rho }_{g}/(kg/{m}^{3}) $2 708
    孔隙度$ n $0.45~0.85
    孔隙曲折度$ \alpha $$ \alpha = \left\{ {\begin{array}{*{20}{l}} {1.35}&{\varphi \leqslant 4} \\ {{{ - }}0.3 + 0.4125\varphi }&{4 < \varphi < 8} \\ {3.0}&{\varphi \geqslant 8} \end{array}} \right. $$ \varphi = {{ -{\rm{ lo}}}}{{{{\rm{g}}}}_2}d $,$ \varphi $为中值粒径(单位:),d为颗粒直径(单位:mm)
    渗透率$ \kappa /{m^2} $$ \kappa = \dfrac{{{d^2}{n^3}}}{{180{{(1 - n)}^2}}}\dfrac{1}{{\sqrt {10} }} $
    海水动力黏度$ \eta /(Pa \cdot s) $0.001
    颗粒体积模量$ {K_g}/Pa $3.2×1010
    海水体积模量$ {K_w}/Pa $2.395×109
    海水密度$ {\rho }_{w}/(kg/{m}^{3}) $102 3
    框架剪切模量$ {\mu _0}/Pa $${\mu _0} = 1.835 \times {10^5}{\left(\dfrac{n}{ {1 - n} }\right)^{ - 1.12} }\sqrt { {\tau _a}(z)}$
    $ {\tau _a}(z) = (1 - n)({\rho _s} - {\rho _f})gz $,式中,$ {\tau _a}(z) $为沉积物平均有效压力;重力加速度$ g = 9.8m \cdot {s^{ - 2}} $;为颗粒密度;为孔隙流体密度;z为沉积层厚度(单位:m)
    框架体积模量$ {K_0}/Pa $$ {K_0} = \dfrac{{2{\mu _0}(1 + \sigma )}}{{3(1 - 2\sigma )}} $ ,式中,$ \sigma $为沉积物骨架的泊松比
    孔隙大小$ a $$ a = \dfrac{d}{3}\dfrac{n}{{1 - n}}\dfrac{1}{{1.8}} $
    体积对数衰减$ {\delta _f} $$ {\delta _f}({z_s}) = {\delta _f}({z_0})\sqrt {{\raise0.7ex\hbox{${{z_0}}$} \mathord{\left/ {\vphantom {{{z_0}} {{z_s}}}}\right.}\lower0.7ex\hbox{${{z_s}}$}}} $,式中,z0zs分别为浅部沉积物深度
    下载: 导出CSV

    表  3  反演结果与取样测试数据对比信息

    Tab.  3  Comparison information between inversion results and sampling test data

    站位经度纬度样品孔隙度反演孔隙度偏差度/%样品密度反演密度偏差度/%样品平均粒径反演平均粒径偏差度/%
    PL3120.464 40°E39.492 31°N0.6830.625–8.371 636.731 623.65–0.806.565.58–14.91
    PL4120.476 53°E39.518 09°N0.7010.634–9.641 582.651 611.621.836.945.73–17.46
    PL6120.500 19°E39.568 55°N0.7270.711–2.181 468.371 507.182.647.497.24–3.44
    PL7120.513 81°E39.593 29°N0.7160.7241.151 597.961 477.96–7.517.257.543.99
    PL8120.524 32°E39.619 35°N0.7070.77910.151 536.731 416.86–7.807.068.6922.97
    PL9120.536 22°E39.644 64°N0.7270.7969.541 657.141 394.14–15.877.489.0621.14
    PL10120.546 00°E39.661 17°N0.6940.77511.741 674.491 418.37–15.306.788.6026.74
    PL11120.554 16°E39.678 54°N0.7080.78010.101 601.021 414.50–11.657.088.7122.98
    PL12120.560 21°E39.695 24°N0.6950.7568.791 595.921 439.56–9.806.818.1920.23
    PL13120.570 56°E39.716 87°N0.6870.7519.291 728.571 450.71–16.076.648.0921.79
    PL14120.575 45°E39.723 59°N0.6740.7379.271 771.431 461.70–17.486.397.7821.77
    PL15120.579 86°E39.732 96°N0.6580.74513.261 679.591 455.37–13.356.087.9530.83
    PL16120.590 03°E39.754 23°N0.6680.74711.841 682.651 458.80–13.306.277.9526.70
    PL17120.597 98°E39.771 02°N0.6660.7228.411 628.571 489.09–8.566.237.4619.80
    下载: 导出CSV
  • [1] 何起祥. 中国海洋沉积地质学[M]. 海洋出版社, 2006.

    He Qixing. Marine Sedimentary Geology of China[M]. China Ocean Press, 2006.
    [2] 朱长歧, 汪稔, 符策简. WR-II型海洋静力触探(SCPT)数据处理系统中的岩土力学分层模型[J]. 岩土力学, 1994, 15(2): 78−88.

    Zhu Changqi, Wang Ren, Fu Cejian. The identification model of soil layer used in type WR-II SCPT data processing system[J]. Rock and Soil Mechanics, 1994, 15(2): 78−88.
    [3] Hamilton E L. Elastic properties of marine sediments[J]. Journal of Geophysical Research, 1971, 76(2): 579−604. doi: 10.1029/JB076i002p00579
    [4] Berndt C, Bünz S, Clayton T, et al. Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin[J]. Marine and Petroleum Geology, 2004, 21(6): 723−733. doi: 10.1016/j.marpetgeo.2004.02.003
    [5] 阮爱国, 李家彪, 初凤友, 等. 海底天然气水合物层界面反射AVO数值模拟[J]. 地球物理学报, 2006, 49(6): 1826−1835. doi: 10.3321/j.issn:0001-5733.2006.06.031

    Ruan Aiguo, Li Jiabiao, Chu Fengyou, et al. AVO numerical simulation of gas hydrates reflectors beneath seafloor[J]. Chinese Journal of Geophysics, 2006, 49(6): 1826−1835. doi: 10.3321/j.issn:0001-5733.2006.06.031
    [6] Li Xishuang, Liu Baohua, Liu Lejun, et al. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea[J]. Journal of Ocean University of China, 2017, 16(6): 1035−1042. doi: 10.1007/s11802-017-3308-6
    [7] Panda S, LeBlanc L R, Schock S G. Sediment classification based on impedance and attenuation estimation[J]. The Journal of the Acoustical Society of America, 1994, 96(5): 3022−3035. doi: 10.1121/1.411266
    [8] Kim G Y, Richardson M D, Bibee D L, et al. Sediment types determination using acoustic techniques in the northeastern Gulf of Mexico[J]. Geosciences Journal, 2004, 8(1): 95−103. doi: 10.1007/BF02910282
    [9] Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
    [10] 曹正良, 张叔英, 马在田. BICSQS模型与Biot-Stoll模型海底界面声波反射和散射的比较[J]. 声学学报, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002

    Cao Zhengliang, Zhang Shuying, Ma Zaitian. Comparison of reflections and interface scatterings from BICSQS model and Biot-Stoll model seafloors[J]. Acta Acustica, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002
    [11] 朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017

    Zhu Zuyang, Wang Dong, Zhou Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoil model[J]. Chinese Journal of Geophysics, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [12] 陈静, 阎贫, 王彦林, 等. 基于Biot-Stoll模型声速反演中的参数选择——以南海南部沉积物为例[J]. 热带海洋学报, 2012, 31(1): 50−54.

    Chen Jing, Yan Pin, Wang Yanlin, et al. Choice of parameters for Biot-Stoll model-based inversion of sound velocity of seafloor sediments in the southern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(1): 50−54.
    [13] 王景强, 郭常升, 刘保华, 等. 基于Buckingham模型和Biot-Stoll模型的南沙海域沉积物声速分布特征[J]. 地球学报, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13

    Wang Jingqiang, Guo Changsheng, Liu Baohua, et al. Sound speed distribution of seafloor sediments in Nansha Islands Sea based on Buckingham Model and Biot-Stoll Model[J]. Acta Geoscientica Sinica, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13
    [14] 陶春辉. 海底沉积物声学原位测试和特性研究[D]. 杭州: 浙江大学, 2005.

    Tao Chunhui. In situ acoustic experiment and properties study in marine sediments[D]. Hangzhou: Zhejiang University, 2005.
    [15] 陈静, 吕修亚, 陈亮, 等. 基于Chirp数据反演琼州海峡海底沉积物物性[J]. 热带地理, 2017, 37(6): 874−879.

    Chen Jing, Lü Xiuya, Chen Liang, et al. Physical properties of the seabed inversed by Chirp data in the Qiongzhou strait[J]. Tropical Geography, 2017, 37(6): 874−879.
    [16] 董太禄. 渤海现代沉积作用与模式的研究[J]. 海洋地质与第四纪地质, 1996, 16(4): 43−53.

    Dong Tailu. Modern sedimentation models in the Bohai Sea[J]. Marine Geology and Quaternary Geology, 1996, 16(4): 43−53.
    [17] 乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4): 139−147.

    Qiao Shuqing, Shi Xuefa, Wang Guoqing, et al. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea[J]. Haiyang Xuebao, 2010, 32(4): 139−147.
    [18] 王伟伟, 付元宾, 李树同, 等. 渤海中部表层沉积物分布特征与粒度分区[J]. 沉积学报, 2013, 31(3): 478−485.

    Wang Weiwei, Fu Yuanbin, Li Shutong, et al. Distribution on surface sediment and sedimentary divisions in the middle part of Bohai Sea[J]. Acta Sedimentologica Sinica, 2013, 31(3): 478−485.
    [19] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
    [20] Stoll R D. Acoustic waves in saturated sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 19-39.
    [21] 黄绪德. 计算机在地学中的应用[J]. 物探化探计算技术, 1991, 13(2): 93−97.

    Huang Xude. Computer applications to geoscience[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(2): 93−97.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  19
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-04-05
  • 网络出版日期:  2022-05-16

目录

    /

    返回文章
    返回