留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浮标观测的南海西沙群岛泻湖区潮流特征研究

朱明权 岑显荣 鲁远征 郭双喜 屈玲 黄鹏起 方文东 陈举 周生启

朱明权,岑显荣,鲁远征,等. 基于浮标观测的南海西沙群岛泻湖区潮流特征研究[J]. 海洋学报,2022,44(x):1–8
引用本文: 朱明权,岑显荣,鲁远征,等. 基于浮标观测的南海西沙群岛泻湖区潮流特征研究[J]. 海洋学报,2022,44(x):1–8
Zhu Mingquan,Cen Xianrong,Lu Yuanzheng, et al. Tidal characteristics of coral reef lagoon of Xisha Islands in South China Sea: based on mooring observation[J]. Haiyang Xuebao,2022, 44(x):1–8
Citation: Zhu Mingquan,Cen Xianrong,Lu Yuanzheng, et al. Tidal characteristics of coral reef lagoon of Xisha Islands in South China Sea: based on mooring observation[J]. Haiyang Xuebao,2022, 44(x):1–8

基于浮标观测的南海西沙群岛泻湖区潮流特征研究

基金项目: 国家重点研发项目(2021YFC3101303);国家自然科学基金(91952106,42006196);海南省科技专项基金(ZDYF2021GXJS217);广东省基础及应用基础研究基金(2021A1515110839);南方海洋科学与工程广东实验室引进人才重点专项(GML2019ZD0304);中国科学院南海生态与环境工程研究院(ISEE2021PY01)
详细信息
    作者简介:

    朱明权(1997-),男,浙江省苍南县人,从事海洋底边界层研究。E-mail: zhumingquan19@mails.ucas.ac.cn

    通讯作者:

    周生启,男,研究员,主要研究深海海洋对流的动力演化过程,中小尺度海洋过程所引起的海洋混合和运输。E-mail: sqzhou@scsio.ac.cn

Tidal characteristics of coral reef lagoon of Xisha Islands in South China Sea: based on mooring observation

  • 摘要: 本文利用南海西沙群岛泻湖区29 d的全水深浮标观测资料研究了泻湖区内正压潮和内潮的基本特征,分析用深度平均方法分析海流的适用性,并讨论泻湖区内潮的主要来源。深度平均流的动能谱显示全日潮流占主导,其动能占整体海流动能的41%。对比分析深度平均流和Tpxo7.2模式预测的全日、半日潮流的调和常数,两者均表明全日正压潮流受地形调制,主轴方向为西北-东南向,而半日正压潮流主轴方向为东-西向。两种方法得到的全日正压潮流大-小潮存在半个相位(6~7 d)的差异,进一步分析发现全日正压潮和全日内潮潮龄不同,存在部分相互抵消,且全日内潮大潮发生时间在深度上存在差异,推测由于缺少海表和海底的测量数据,导致深度平均方法得到的全日正压潮仍然包含全日内潮信号。调和分析结果表明,全日内潮的动能中相干部分占比高达91%,说明泻湖区的全日内潮是正压潮与局地岛礁地形相互作用产生,而从远场传播而来的可能性很小。
  • 图  1  南海地形图(a)和浮标示意图(b)

    红色方框表示西沙群岛,红色十字表示浮标观测点

    Fig.  1  Bathymetry of the South China sea (a), and Mooring diagram (b)

    Red square represent Xisha Islands, red cross represent location of the mooring

    图  2  深度平均流的动能谱

    Fig.  2  Power spectra of the depth-averaged current

    图  3  正压潮4个主要分潮的潮流椭圆(a)O1, (b) K1, (c) M2, (d) S2

    蓝线代表深度平均流,红线代表模式预报

    Fig.  3  The ellipses of four dominant barotropic tidal currents

    Blue line: depth-averaged; red line: model

    图  4  东西方向(a)和南北方向(b)深度平均的全日正压潮流和模式预测的全日正压潮流的时间序列; CTD观测的海底压强变化和模式预测的海平面高度变化的时间序列(c)

    Fig.  4  Time series of depth-averaged diurnal current and model diurnal current (a), (b). Time series of sea bottom pressure measured by CTD and sea level height predicted by model (c)

    图  5  O1分潮相位差的PDF分布,(a)8 m,(b)36 m,(c)64 m

    Fig.  5  PDF distribution of O1 tidal phase difference

    图  6  K1分潮相位差的PDF分布,(a)8 m,(b)36 m,(c)64 m

    Fig.  6  PDF distribution of K1 tidal phase difference

    图  7  全日相干内潮水平动能的时间–深度剖面

    Fig.  7  Horizontal kinetic energy of diurnal coherent internal tide

    图  8  深度积分后全日相干/非相干内潮和Tpxo7.2的全日正压潮的水平动能的时间序列

    Fig.  8  Time series of depth-integrated of horizontal kinetic energy of diurnal coherent/incoherent internal tide and diurnal barotropic tide of Tpxo7.2

    表  1  深度平均流的主要分潮的椭圆要素

    Tab.  1  Elliptical elements of four major constituents of depth-averaged currents

    分潮长轴/(cm·s−1短轴/(cm·s−1倾角/°迟角/°
    O19.95–3.62152.24350.27
    K110.91–5.94155.35214.78
    M23.420.64178.86319.17
    S22.421.1213.99245.89
    下载: 导出CSV

    表  2  模式预测的主要分潮的椭圆要素

    Tab.  2  Elliptical elements of four major constituents of model

    分潮长轴/(cm·s−1短轴/(cm·s−1倾角/°迟角/°
    O111.81–4.01164.95199.07
    K112.92–4.25148.06262.06
    M23.030.472.10148.73
    S20.370.0112.62248.55
    下载: 导出CSV

    表  3  O1分潮PDF峰值对应的相位差

    Tab.  3  Phase difference corresponding PDF peak of O1 constituent

    深度/m相位差/°
    8207
    36191
    64167
    下载: 导出CSV

    表  4  K1分潮PDF峰值对应的相位差

    Tab.  4  Phase difference corresponding PDF peak of K1 constituent

    深度/m相位差/°
    8116
    36154
    64175
    下载: 导出CSV
  • [1] Briscoe M G. Internal waves in the ocean[J]. Reviews of Geophysics, 1975, 13(3): 591−598. doi: 10.1029/RG013i003p00591
    [2] Munk W, Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1998, 45(12): 1977−2010. doi: 10.1016/s0967-0637(98)00070-3
    [3] Wang Yuhuai, Dai Changfeng, Chen Y Y. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea[J]. Geophysical Research Letters, 2007, 34(18): L18609. doi: 10.1029/2007GL030658
    [4] Osborne A R, Burch T L. Internal solitons in the Andaman sea[J]. Science, 1980, 208(4443): 451−460. doi: 10.1126/science.208.4443.451
    [5] Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1105−1130. doi: 10.1109/JOE.2004.836998
    [6] Simmons H, Chang M H, Chang Yating, et al. Modeling and prediction of internal waves in the South China Sea[J]. Oceanography, 2011, 24(4): 88−99. doi: 10.5670/oceanog.2011.97
    [7] Beardsley R C, Duda T F, Lynch J F, et al. Barotropic tide in the northeast South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1075−1086. doi: 10.1109/JOE.2004.833226
    [8] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399
    [9] Zhao Ruixiang, Zhu Xiaohua, Park J H, et al. Internal tides in the northwestern South China sea observed by pressure-recording inverted echo sounders[J]. Progress in Oceanography, 2018, 168: 112−122. doi: 10.1016/j.pocean.2018.09.019
    [10] van Haren H. Incoherent internal tidal currents in the deep ocean[J]. Ocean Dynamics, 2004, 54(1): 66−76. doi: 10.1007/s10236-003-0083-2
    [11] Kelly S M, Nash J D. Internal-tide generation and destruction by shoaling internal tides[J]. Geophysical Research Letters, 2010, 37(23): L23611. doi: 10.1029/2010GL045598
    [12] 王越, 黄晓冬, 杨运超, 等. 南海东北部全日非相干内潮的特征及其成因[J]. 中国海洋大学学报, 2021, 51(5): 1−9. doi: 10.16441/j.cnki.hdxb.20200175

    Wang Yue, Huang Xiaodong, Yang Yunchao, et al. Characteristics and cause analysis of diurnal incoherent internal tides in the northeastern South China Sea[J]. Periodical of Ocean University of China, 2021, 51(5): 1−9. doi: 10.16441/j.cnki.hdxb.20200175
    [13] 翟荣伟, 陈桂英, 尚晓东. 南海北部相干内潮和非相干内潮演变特征[J]. 海洋学报, 2017, 39(11): 24−36. doi: 10.3969/j.issn.0253-4193.2017.11.003

    Zhai Rongwei, Chen Guiying, Shang Xiaodong. Evolution characteristics of coherent and incoherent internal tides in the northern South China Sea[J]. Haiyang Xuebao, 2017, 39(11): 24−36. doi: 10.3969/j.issn.0253-4193.2017.11.003
    [14] 梁辉, 郑洁, 田纪伟. 南海西北陆坡区内潮与近惯性内波观测研究[J]. 海洋学报, 2016, 38(11): 32−42. doi: 10.3969/j.issn.0253-4193.2016.11.003

    Liang Hui, Zheng Jie, Tian Jiwei. Observation of internal tides and near-inertial internal waves on the continental slope in the northwestern South China Sea[J]. Haiyang Xuebao, 2016, 38(11): 32−42. doi: 10.3969/j.issn.0253-4193.2016.11.003
    [15] Storlazzi C D, Cheriton O M, van Hooidonk R, et al. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming[J]. Scientific Reports, 2020, 10(1): 13435. doi: 10.1038/s41598-020-70372-9
    [16] Lee I H, Wang Yuhuai, Yang Y, et al. Temporal variability of internal tides in the northeast South China Sea[J]. Journal of Geophysical Research:Oceans, 2012, 117(C2): C02013. doi: 10.1029/2011JC007518
    [17] Wu Ziku, Lu Xiangqing, Tian Jiwei. Simulation of barotropic and baroclinic tides in the South China Sea[J]. Acta Oceanologica Sinica, 2005, 24(2): 1−8.
    [18] 邓晓东, 刘军亮, 蔡树群. 南海西沙群岛陆架区的潮流特征分析[J]. 热带海洋学报, 2013, 32(4): 8−12. doi: 10.3969/j.issn.1009-5470.2013.04.002

    Deng Xiaodong, Liu Junliang, Cai Shuqun. Analyses of the tidal current characteristics on the continental shelf of the Xisha Islands in the South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(4): 8−12. doi: 10.3969/j.issn.1009-5470.2013.04.002
    [19] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [20] Holloway P E, Chatwin P G, Craig P. Internal tide observations from the Australian North west shelf in Summer 1995[J]. Journal of Physical Oceanography, 2001, 31(5): 1182−1199. doi: 10.1175/1520-0485(2001)031<1182:Itofta>2.0.Co;2
    [21] Kurapov A L, Egbert G D, Allen J S, et al. The M2 internal tide off Oregon: inferences from data assimilation[J]. Journal of Physical Oceanography, 2003, 33(8): 1733−1757. doi: 10.1175/2397.1
    [22] Martini K I, Alford M H, Kunze E, et al. Observations of internal tides on the Oregon continental slope[J]. Journal of Physical Oceanography, 2011, 41(9): 1772−1794. doi: 10.1175/2011JPO4581.1
    [23] Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea[J]. Journal of Geophysical Research:Oceans, 2013, 118(1): 197−211. doi: 10.1029/2012JC008212
    [24] Codiga D L. Unified tidal analysis and prediction using the UTide Matlab functions[R]. Narragansett: University of Rhode Island, 2011.
    [25] van Haren H. Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions[J]. Journal of Fluid Mechanics, 2013, 714: 591−611. doi: 10.1017/jfm.2012.507
    [26] Holloway P E, Merrifield M A. On the spring-neap variability and age of the internal tide at the Hawaiian ridge[J]. Journal of Geophysical Research:Oceans, 2003, 108(C4): 3126. doi: 10.1029/2002jc001486
    [27] Davis K A, Arthur R S, Reid E C, et al. Fate of internal waves on a shallow shelf[J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015377. doi: 10.1029/2019jc015377
    [28] Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  2
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-03
  • 修回日期:  2022-01-29
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回