留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浮标观测的南海西沙群岛潟湖区潮流特征研究

朱明权 岑显荣 鲁远征 郭双喜 屈玲 黄鹏起 方文东 陈举 周生启

朱明权,岑显荣,鲁远征,等. 基于浮标观测的南海西沙群岛潟湖区潮流特征研究[J]. 海洋学报,2022,44(9):55–62 doi: 10.12284/hyxb2022119
引用本文: 朱明权,岑显荣,鲁远征,等. 基于浮标观测的南海西沙群岛潟湖区潮流特征研究[J]. 海洋学报,2022,44(9):55–62 doi: 10.12284/hyxb2022119
Zhu Mingquan,Cen Xianrong,Lu Yuanzheng, et al. Study on tidal characteristics of coral reef lagoon of Xisha Islands in the South China Sea based on mooring observation[J]. Haiyang Xuebao,2022, 44(9):55–62 doi: 10.12284/hyxb2022119
Citation: Zhu Mingquan,Cen Xianrong,Lu Yuanzheng, et al. Study on tidal characteristics of coral reef lagoon of Xisha Islands in the South China Sea based on mooring observation[J]. Haiyang Xuebao,2022, 44(9):55–62 doi: 10.12284/hyxb2022119

基于浮标观测的南海西沙群岛潟湖区潮流特征研究

doi: 10.12284/hyxb2022119
基金项目: 国家重点研发项目(2021YFC3101303);国家自然科学基金(12172369,91952106,42006196);海南省自然科学基金(422QN439);海南省科技专项基金(ZDYF2021GXJS217);广东省基础及应用基础研究基金(2021A1515110839);南方海洋科学与工程广东实验室引进人才重点专项(GML2019ZD0304,SMSEGL20SC01);中国科学院南海生态与环境工程研究院(ISEE2021PY01);热带海洋环境国家重点实验室(中国科学院南海海洋研究所)开放课题(LTO2219)
详细信息
    作者简介:

    朱明权(1997-),男,浙江省苍南县人,从事海洋底边界层研究。E-mail: zhumingquan19@mails.ucas.ac.cn

    通讯作者:

    周生启,男,研究员,主要从事深海海洋对流的动力演化过程及中小尺度海洋过程所引起的海洋混合和运输研究。E-mail: sqzhou@scsio.ac.cn

  • 中图分类号: P731.23

Study on tidal characteristics of coral reef lagoon of Xisha Islands in the South China Sea based on mooring observation

  • 摘要: 本文利用南海西沙群岛潟湖区29 d的全水深浮标观测资料研究了潟湖区内正压潮和内潮的基本特征,采用深度平均方法分析海流的适用性,并讨论潟湖区内潮的主要来源。深度平均流的动能谱显示全日潮流占主导,其动能占整体海流动能的41%。对比分析深度平均流和Tpxo7.2模式预测的全日、半日潮流的调和常数,两者均表明全日正压潮流受地形调制,主轴方向为西北−东南向,而半日正压潮流主轴方向为东−西向。两种方法得到的全日正压潮流大−小潮存在半个相位(6~7 d)的差异,进一步分析发现全日正压潮和全日内潮潮龄不同,存在部分相互抵消,且全日内潮大潮发生时间在深度上存在差异,推测由于缺少海表和海底的测量数据,导致深度平均方法得到的全日正压潮仍然包含全日内潮信号。调和分析结果表明,全日内潮的动能中相干部分占比高达91%,说明潟湖区的全日内潮是正压潮与局地岛礁地形相互作用产生,而从远场传播而来的可能性很小。
  • 图  1  南海地形图(a)和浮标示意图(b)

    红色方框表示西沙群岛,红色十字表示浮标观测点

    Fig.  1  Bathymetry of the South China Sea (a) and mooring diagram (b)

    Red square represents Xisha Islands, red cross represents location of the mooring

    图  2  深度平均流的动能谱

    Fig.  2  Power spectra of the depth-averaged current

    图  3  正压潮4个主要分潮的潮流椭圆

    蓝线:深度平均;红线:模式预报

    Fig.  3  The ellipses of four dominant barotropic tidal currents

    Blue line: depth-averaged; red line: predicted by model

    图  4  正压潮的时间序列

    蓝线:观测的全日潮;红线:模式预测的全日潮。a. 东西方向的速度;b. 南北方向的速度;c. CTD观测的海底压强变化和模式预测的海平面高度变化的时间序列

    Fig.  4  Time series of barotropic current

    Blue lines: observed diurnal tides; red lines: diurnal tides predicted by model. a. East-west velocity; b. north-south velocity; c. time series of sea bottom pressure measured by CTD and sea level height predicted by model

    图  5  O1分潮相位差的概率密度函数分布

    Fig.  5  Probability density function distribution of O1 tidal phase difference

    图  6  K1分潮相位差的概率密度函数分布

    Fig.  6  Probability density function distribution of K1 tidal phase difference

    图  7  全日相干内潮水平动能的时间–深度剖面

    Fig.  7  Horizontal kinetic energy of diurnal coherent internal tide

    图  8  深度积分后全日相干/非相干内潮和Tpxo7.2的全日正压潮的水平动能的时间序列

    Fig.  8  Time series of depth-integrated of horizontal kinetic energy of diurnal coherent/incoherent internal tide and diurnal barotropic tide of Tpxo7.2

    表  1  深度平均流的主要分潮的椭圆要素

    Tab.  1  Elliptical elements of four major constituents of depth-averaged currents

    分潮长轴/(cm·s−1短轴/(cm·s−1倾角/(°)迟角/(°)
    O19.95–3.62152.24350.27
    K110.91–5.94155.35214.78
    M23.420.64178.86319.17
    S22.421.1213.99245.89
    下载: 导出CSV

    表  2  模式预测的主要分潮的椭圆要素

    Tab.  2  Elliptical elements of four major constituents of model

    分潮长轴/(cm·s−1短轴/(cm·s−1倾角/(°)迟角/(°)
    O111.81–4.01164.95199.07
    K112.92–4.25148.06262.06
    M23.030.472.10148.73
    S20.370.0112.62248.55
    下载: 导出CSV

    表  3  O1分潮概率密度函数峰值对应的相位差

    Tab.  3  Phase difference corresponding probability density function peak of O1 constituent

    深度/m相位差/(°)
    8207
    36191
    64167
    下载: 导出CSV

    表  4  K1分潮概率密度函数峰值对应的相位差

    Tab.  4  Phase difference corresponding probability density function peak of K1 constituent

    深度/m相位差/(°)
    8116
    36154
    64175
    下载: 导出CSV
  • [1] Briscoe M G. Internal waves in the ocean[J]. Reviews of Geophysics, 1975, 13(3): 591−598. doi: 10.1029/RG013i003p00591
    [2] Munk W, Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1977−2010. doi: 10.1016/s0967-0637(98)00070-3
    [3] Wang Yuhuai, Dai Changfeng, Chen Y Y. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea[J]. Geophysical Research Letters, 2007, 34(18): L18609. doi: 10.1029/2007GL030658
    [4] Osborne A R, Burch T L. Internal solitons in the Andaman Sea[J]. Science, 1980, 208(4443): 451−460. doi: 10.1126/science.208.4443.451
    [5] Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1105−1130. doi: 10.1109/JOE.2004.836998
    [6] Simmons H, Chang M H, Chang Yating, et al. Modeling and prediction of internal waves in the South China Sea[J]. Oceanography, 2011, 24(4): 88−99. doi: 10.5670/oceanog.2011.97
    [7] Beardsley R C, Duda T F, Lynch J F, et al. Barotropic tide in the Northeast South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1075−1086. doi: 10.1109/JOE.2004.833226
    [8] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399
    [9] Zhao Ruixiang, Zhu Xiaohua, Park J H, et al. Internal tides in the northwestern South China Sea observed by pressure-recording inverted echo sounders[J]. Progress in Oceanography, 2018, 168: 112−122. doi: 10.1016/j.pocean.2018.09.019
    [10] van Haren H. Incoherent internal tidal currents in the deep ocean[J]. Ocean Dynamics, 2004, 54(1): 66−76. doi: 10.1007/s10236-003-0083-2
    [11] Kelly S M, Nash J D. Internal-tide generation and destruction by shoaling internal tides[J]. Geophysical Research Letters, 2010, 37(23): L23611. doi: 10.1029/2010GL045598
    [12] 王越, 黄晓冬, 杨运超, 等. 南海东北部全日非相干内潮的特征及其成因[J]. 中国海洋大学学报, 2021, 51(5): 1−9. doi: 10.16441/j.cnki.hdxb.20200175

    Wang Yue, Huang Xiaodong, Yang Yunchao, et al. Characteristics and cause analysis of diurnal incoherent internal tides in the northeastern South China Sea[J]. Periodical of Ocean University of China, 2021, 51(5): 1−9. doi: 10.16441/j.cnki.hdxb.20200175
    [13] 翟荣伟, 陈桂英, 尚晓东. 南海北部相干内潮和非相干内潮演变特征[J]. 海洋学报, 2017, 39(11): 24−36. doi: 10.3969/j.issn.0253-4193.2017.11.003

    Zhai Rongwei, Chen Guiying, Shang Xiaodong. Evolution characteristics of coherent and incoherent internal tides in the northern South China Sea[J]. Haiyang Xuebao, 2017, 39(11): 24−36. doi: 10.3969/j.issn.0253-4193.2017.11.003
    [14] 梁辉, 郑洁, 田纪伟. 南海西北陆坡区内潮与近惯性内波观测研究[J]. 海洋学报, 2016, 38(11): 32−42. doi: 10.3969/j.issn.0253-4193.2016.11.003

    Liang Hui, Zheng Jie, Tian Jiwei. Observation of internal tides and near-inertial internal waves on the continental slope in the northwestern South China Sea[J]. Haiyang Xuebao, 2016, 38(11): 32−42. doi: 10.3969/j.issn.0253-4193.2016.11.003
    [15] Storlazzi C D, Cheriton O M, van Hooidonk R, et al. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming[J]. Scientific Reports, 2020, 10(1): 13435. doi: 10.1038/s41598-020-70372-9
    [16] Lee I H, Wang Yuhuai, Yang Y, et al. Temporal variability of internal tides in the Northeast South China Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02013. doi: 10.1029/2011JC007518
    [17] Wu Ziku, Lu Xiangqing, Tian Jiwei. Simulation of barotropic and baroclinic tides in the South China Sea[J]. Acta Oceanologica Sinica, 2005, 24(2): 1−8.
    [18] 邓晓东, 刘军亮, 蔡树群. 南海西沙群岛陆架区的潮流特征分析[J]. 热带海洋学报, 2013, 32(4): 8−12. doi: 10.3969/j.issn.1009-5470.2013.04.002

    Deng Xiaodong, Liu Junliang, Cai Shuqun. Analyses of the tidal current characteristics on the continental shelf of the Xisha Islands in the South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(4): 8−12. doi: 10.3969/j.issn.1009-5470.2013.04.002
    [19] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [20] Holloway P E, Chatwin P G, Craig P. Internal tide observations from the Australian north west shelf in summer 1995[J]. Journal of Physical Oceanography, 2001, 31(5): 1182−1199. doi: 10.1175/1520-0485(2001)031<1182:Itofta>2.0.Co;2
    [21] Kurapov A L, Egbert G D, Allen J S, et al. The M2 internal tide off Oregon: inferences from data assimilation[J]. Journal of Physical Oceanography, 2003, 33(8): 1733−1757. doi: 10.1175/2397.1
    [22] Martini K I, Alford M H, Kunze E, et al. Observations of internal tides on the Oregon continental slope[J]. Journal of Physical Oceanography, 2011, 41(9): 1772−1794. doi: 10.1175/2011JPO4581.1
    [23] Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 197−211. doi: 10.1029/2012JC008212
    [24] Codiga D L. Unified tidal analysis and prediction using the UTide Matlab functions[R]. Narragansett: University of Rhode Island, 2011.
    [25] van Haren H. Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions[J]. Journal of Fluid Mechanics, 2013, 714: 591−611. doi: 10.1017/jfm.2012.507
    [26] Holloway P E, Merrifield M A. On the spring-neap variability and age of the internal tide at the Hawaiian ridge[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 3126. doi: 10.1029/2002jc001486
    [27] Davis K A, Arthur R S, Reid E C, et al. Fate of internal waves on a shallow shelf[J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015377. doi: 10.1029/2019jc015377
    [28] Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  85
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-03
  • 修回日期:  2022-01-29
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回