留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上新世/更新世之交太平洋经向翻转流演化

范维佳 韩喜球 邱中炎 叶黎明 郭栋山

范维佳,韩喜球,邱中炎,等. 上新世/更新世之交太平洋经向翻转流演化[J]. 海洋学报,2021,43(7):1–10
引用本文: 范维佳,韩喜球,邱中炎,等. 上新世/更新世之交太平洋经向翻转流演化[J]. 海洋学报,2021,43(7):1–10
Fan Weijia,Han Xiqiu,Qiu Zhongyan, et al. Evolution of The Pacific Meridional Overturning Circulation During the Plio-Pleistocene Transition: Nd Isotope Records from the Fe-Mn Crust[J]. Haiyang Xuebao,2021, 43(7):1–10
Citation: Fan Weijia,Han Xiqiu,Qiu Zhongyan, et al. Evolution of The Pacific Meridional Overturning Circulation During the Plio-Pleistocene Transition: Nd Isotope Records from the Fe-Mn Crust[J]. Haiyang Xuebao,2021, 43(7):1–10

上新世/更新世之交太平洋经向翻转流演化

基金项目: 国家自然科学基金(91951201,41606061)、中国博士后科学基金(161690)、自然资源部第二海洋研究所基本科研业务费专项资金(JB1504,JZ1901,JG1521)共同资助
详细信息
    作者简介:

    范维佳(1983-),男,山西省神池县人,主要从事古海洋研究。E-mail:fwj1983@163.com

    通讯作者:

    韩喜球(1969-),女,研究员,主要从事海底资源与成矿系统研究。E-mail:xqhan@sio.org.cn

Evolution of The Pacific Meridional Overturning Circulation During the Plio-Pleistocene Transition: Nd Isotope Records from the Fe-Mn Crust

  • 摘要: 随着北半球冰盖的发育,全球气候环境发生了显著变化。太平洋经向翻转流(PMOC)对全球海洋热量分配和大气CO2在深海的封存起举足轻重的作用,但是关于PMOC与北半球冰盖的形成之间的关系还欠缺研究。本文收集了太平洋海山富钴结壳的Nd同位素记录,通过对比不同区域Nd同位素记录的演化特征,分析风尘输入、水团演化等因素对Nd同位素记录的影响,探讨了太平洋经向翻转流演化及其与全球气候变化之间的关系,认为北太平洋深层水下沉的停滞和亚洲风尘输入增加可能是导致深层水Nd同位素从3~4 Ma开始降低的原因。同时,因北太平洋深层水下沉停滞,PMOC改组,使得更多的CO2在深水封存,从而对全球气候变冷和北半球冰盖形成产生了积极的贡献。
  • 图  1  太平洋中、深层洋流路径示意图(根据Kawabe and Fujio[38])。

    ACC:南极绕极流;LCDW:下层绕极深层水;UCDW:上层绕极深层水;AAIW:南极中层水;EqPIW:赤道太平洋中层水;NPIW:北太平洋中层水;NPDW:北太平洋深层水

    Fig.  1  The circulation of the Pacific Intermediate and deep water masses (after Kawabe and Fujio[38]).

    ACC: Antarctic circumpolar current; LCDW: lower circumpolar deep water; UCDW: upper circumpolar deep water; AAIW : Antarctic intermediate water; EqPIW: equatorial Pacific intermediate water; NPIW: North Pacific intermediate water; NPDW: North Pacific deep water

    图  2  太平洋Nd同位素记录站位分布[49-55], 风尘记录U1430、GPC3和ODP885/886分别来自文献[56-58]

    Fig.  2  Map showing the distribution of Nd isotopes records[49-55], also shown here the locations of U1430[56], GPC3[57] and ODP885/886[58] which are aeolian dust records

    图  3  太平洋Nd同位素记录及其代表的水团εNd演化

    Fig.  3  Nd isotope records from the Pacific Ocean and εNd variation of variety water masses

    图  4  末次冰盛期以来北太平洋沉积物岩心Nd同位素记录、东南太平洋深层水输运时间和大气CO2浓度随时间的演化

    a. 阿拉斯加湾中层水(紫色,由85TC/JC和U1419两条记录拼接)和深层水(蓝色,由87JC和U1418两条记录拼接)εNd值变化[16];b. 大气CO2浓度记录及其变化速率[80-81];c. 东赤道太平洋ODP 846孔和东南太平洋ODP 1123孔Nd同位素差值反映的深层水输送速率的变化[77]。黄色阴影指示几乎同时发生的冰消期大气CO2浓度上升和全球海洋平均温度上升的两个阶段

    Fig.  4  The variation of authigenic εNd of the intermediate and the deep water from sub-arctic north Pacific, deep circulation transit time and atmospheric CO2 concentration since the Last Glacial Maximum

    a. Authigenic εNd of the intermediate (record in purple) and the deep water (records in blue) from the Alaska Bay[16]; b. ice-core CO2 and its rate of change[80-81]; c. calculated transit time of the Pacific deep water (red line) according to the ΔεNd between ODP 846 site and ODP1233 site (green line)[77]. The yellow-shaded intervals denoted the synchronous increase of atmospheric CO2 and rise of global ocean mean temperature

    表  1  太平洋中、深层水团的εNd特征值

    Tab.  1  The εNd values of the intermediate and deep water masses in the Pacific Ocean

    水团εNd特征值参考文献
    源区改性后
    LCDW−8−5.2, −4.8文献[30,46]及其中引用数据
    UCDW−8−3.7~−0.7文献[44-46]
    AAIW−6.6~−8.2−2.8文献[27,47]
    EqPIW−2.1~−3.4——文献[44,46,48]
    NPIW−3~−3.8——文献[45-46]
    NPDW−3.9−3.5文献[39-40,44,48]
      ①赤道海区下层绕极深层水的εNd值;②24°N附近下层绕极深层水的εNd值
    下载: 导出CSV
  • [1] Raymo M E. The initiation of Northern Hemisphere glaciation[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 353−383. doi: 10.1146/annurev.ea.22.050194.002033
    [2] Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation[J]. Science, 2014, 346(6211): 847−851. doi: 10.1126/science.1255586
    [3] Meyers S R, Hinnov L A. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise[J]. Paleoceanography and Paleoclimatology, 2010, 25(3): PA3207.
    [4] 鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11): 1164−1172. doi: 10.1360/N972015-01294

    Lu Huayu, Wang Yao. What causes the ice ages in the late Pliocene and Pleistocene?[J]. Chinese Science Bulletin, 2016, 61(11): 1164−1172. doi: 10.1360/N972015-01294
    [5] 张文防, 李高军, 陈骏. 北半球大冰期(约2.73 Ma)前后北太平洋风尘沉积突变[J]. 第四纪研究, 2019, 39(3): 525−534. doi: 10.11928/j.issn.1001-7410.2019.03.01

    Zhang Wenfang, Li Gaojun, Chen Jun. The abrupt change of Aeolian dust in north Pacific sediments during major Northern Hemisphere Glaciations at CA. 2.73 Ma[J]. Quaternary Sciences, 2019, 39(3): 525−534. doi: 10.11928/j.issn.1001-7410.2019.03.01
    [6] Willeit M, Ganopolski A, Calov R, et al. The role of CO2 decline for the onset of Northern Hemisphere glaciation[J]. Quaternary Science Reviews, 2015, 119: 22−34. doi: 10.1016/j.quascirev.2015.04.015
    [7] Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4213.
    [8] Maslin M A, Li X S, Loutre M F, et al. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation[J]. Quaternary Science Reviews, 1998, 17(4/5): 411−426.
    [9] Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686): 673−676. doi: 10.1038/31447
    [10] Bartoli G, Sarnthein M, Weinelt M, et al. Final closure of Panama and the onset of northern hemisphere glaciation[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 33−44.
    [11] Ruggieri E, Herbert T, Lawrence K T, et al. Change point method for detecting regime shifts in paleoclimatic time series: application to δ18O time series of the Plio-Pleistocene. Paleoceanography and Paleoclimatology, 2009, 24(1): PA1204.
    [12] Hayashi T, Yamanaka T, Hikasa Y, et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation[J]. Communications Earth & Environment, 2020, 1: 25.
    [13] Amakawa H, Usui A, Iijima K, et al. Surface layer Nd isotopic composition of ferromanganese crusts collected from the Takuyo-Daigo Seamount reflects ambient seawater[J]. Geochemical Journal, 2017, 51(1): e1−e7. doi: 10.2343/geochemj.2.0463
    [14] Frank M, Van De Flierdt T, Halliday A N, et al. Evolution of deepwater mixing and weathering inputs in the central Atlantic Ocean over the past 33 Myr[J]. Paleoceanography and Paleoclimatology, 2003, 18(4): 1091.
    [15] Wu Qiong, Colin C, Liu Zhifei, et al. Foraminiferal εNd in the deep north-western subtropical Pacific Ocean: Tracing changes in weathering input over the last 30, 000 years[J]. Chemical Geology, 2017, 470: 55−66. doi: 10.1016/j.chemgeo.2017.08.022
    [16] Du Jianghui, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations[J]. Nature Geoscience, 2018, 11(10): 749−755. doi: 10.1038/s41561-018-0205-6
    [17] Han Xiqiu, Jin Xianglong, Yang Shufeng, et al. Rhythmic growth of pacific ferromanganese nodules and their milankovitch climatic origin[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 143−157.
    [18] 韩喜球. 大洋多金属结核的生长韵律与全球变化[M]. 北京: 地质出版社, 2009.

    Han Xiqiu. Growth rhythm of pelagic polymetallic nodules and the global changes[M]. Beijing: Geological Publishing House, 2009.
    [19] Han Xiqiu, Qiu Zhongyan, Ma Weilin, et al. High-resolution dating of Co-rich crusts: A comparative study using the methods of orbital pacing and 230Thex/232Th dating[J]. Science in China Series D: Earth Sciences, 2009, 52(4): 484−488. doi: 10.1007/s11430-009-0037-8
    [20] 韩喜球, 邱中炎. 中太平洋铁锰结壳灰度序列中米兰柯维奇周期的识别及结壳生长速率的演化[J]. 沉积学报, 2010, 28(5): 1006−1011.

    Han Xiqiu, Qiu Zhongyan. The identification of Milankovitch cycles in the gray-level series of Fe-Mn crust from the central Pacific ocean and its growth rate evolution[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1006−1011.
    [21] 韩喜球, 邱中炎, 马维林. 海山富钴结壳: 高分辨率年代框架与古环境记录研究[M]. 北京: 地质出版社, 2014.

    Han Xiqiu, Qiu Zhongyan, Ma Weilin. Seamount cobalt-rich crusts: high resolution age framework and paleo-environment records[M]. Beijing: Geological Publishing House, 2014.
    [22] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules[J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 823−833.
    [23] Pearce C R, Jones M T, Oelkers E H, et al. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater[J]. Earth and Planetary Science Letters, 2013, 369-370: 138−147. doi: 10.1016/j.jpgl.2013.03.023
    [24] Yu Zhaojie, Colin C, Meynadier L, et al. Seasonal variations in dissolved neodymium isotope composition in the Bay of Bengal[J]. Earth and Planetary Science Letters, 2017, 479: 310−321. doi: 10.1016/j.jpgl.2017.09.022
    [25] Greaves M J, Statham P J, Elderfield H. Rare earth element mobilization from marine atmospheric dust into seawater[J]. Marine Chemistry, 1994, 46(3): 255−260. doi: 10.1016/0304-4203(94)90081-7
    [26] Tachikawa K, Handel C, Dupré B. Distribution of rare earth elements and neodymium isotopes in settling particulate material of the tropical Atlantic Ocean (EUMELI site)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(11): 1769−1792. doi: 10.1016/S0967-0637(97)00057-5
    [27] Tachikawa K, Athias V, Jeandel C. Neodymium budget in the modern ocean and paleoceanographic implications[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3254. doi: 10.1029/1999JC000285
    [28] Greaves M J, Elderfield H, Sholkovitz E R. Aeolian sources of rare earth elements to the Western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 31−38.
    [29] Jones C E, Halliday A N, Rea D K, et al. Neodymium isotopic variations in north pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater[J]. Earth and Planetary Science Letters, 1994, 127(1/4): 55−66.
    [30] Horikawa K, Martin E E, Asahara Y, et al. Limits on conservative behavior of Nd isotopes in seawater assessed from analysis of fish teeth from Pacific core tops[J]. Earth and Planetary Science Letters, 2011, 310(1/2): 119−130.
    [31] Goldstein S L, Hemming S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[J]. Treatise on Geochemistry, 2003, 6: 453−489.
    [32] Talley L D, Pickard G L, Emery W J, et al. Chapter 10 - pacific ocean[M]//Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography. 6th ed. Boston: Academic Press, 2011: 303−362.
    [33] Talley L D, Sprintall J. Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the south equatorial current[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10009. doi: 10.1029/2004JC002826
    [34] You Yuzhu. The pathway and circulation of North Pacific intermediate water[J]. Geophysical Research Letters, 2003, 30(24): 2291.
    [35] Miyao T, Ishikawa K. Formation, distribution and volume transport of the north pacific intermediate water studied by repeat hydrographic observations[J]. Journal of Oceanography, 2003, 59(6): 905−919. doi: 10.1023/B:JOCE.0000009580.24051.90
    [36] Bingham F M, Lukas R. The southward intrusion of North Pacific Intermediate Water along the Mindanao coast[J]. Journal of Physical Oceanography, 1994, 24(1): 141−154. doi: 10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2
    [37] Talley L D. Distribution and formation of north Pacific intermediate water[J]. Journal of Physical Oceanography, 1993, 23(3): 517−537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
    [38] Kawabe M, Fujio S. Pacific ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389−403. doi: 10.1007/s10872-010-0034-8
    [39] Amakawa H, Sasaki K, Ebihara M. Nd isotopic composition in the central North Pacific[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4705−4719. doi: 10.1016/j.gca.2009.05.058
    [40] Pahnke K, Van De Flierdt T, Jones K M, et al. GEOTRACES intercalibration of neodymium isotopes and rare earth element concentrations in seawater and suspended particles. Part 2: Systematic tests and baseline profiles[J]. Limnology and Oceanography-Methods, 2012, 10(4): 252−269. doi: 10.4319/lom.2012.10.252
    [41] Piepgras D J, Jacobsen S B. The isotopic composition of neodymium in the North Pacific[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1373−1381. doi: 10.1016/0016-7037(88)90208-6
    [42] Amakawa H, Alibo D I A, Nozaki Y. Nd concentration and isotopic composition distributions in surface waters of Northwest Pacific Ocean and its adjacent seas[J]. Geochemical Journal, 2004, 38(6): 493−504. doi: 10.2343/geochemj.38.493
    [43] Amakawa H, Nozaki Y, Alibo D S, et al. Neodymium isotopic variations in Northwest Pacific waters[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 715−727. doi: 10.1016/S0016-7037(03)00501-5
    [44] Fröllje H, Pahnke K, Schnetger B, et al. Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability[J]. Geochimica et Cosmochimica Acta, 2016, 189: 110−131. doi: 10.1016/j.gca.2016.06.001
    [45] Basak C, Pahnke K, Frank M, et al. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific[J]. Earth and Planetary Science Letters, 2015, 419: 211−221. doi: 10.1016/j.jpgl.2015.03.011
    [46] Grenier M, Jeandel C, Lacan F, et al. From the subtropics to the central equatorial Pacific Ocean: neodymium isotopic composition and rare earth element concentration variations[J]. Journal of Geophysical Research Oceans, 2013, 118(2): 592−618. doi: 10.1029/2012JC008239
    [47] Lacan F, Tachikawa K, Jeandel C. Neodymium isotopic composition of the oceans: A compilation of seawater data[J]. Chemical Geology, 2012, 300-301: 177−184. doi: 10.1016/j.chemgeo.2012.01.019
    [48] Molina-Kescher M, Frank M, Hathorne E. South Pacific dissolved Nd isotope compositions and rare earth element distributions: water mass mixing versus biogeochemical cycling[J]. Geochimica et Cosmochimica Acta, 2014, 127: 171−189. doi: 10.1016/j.gca.2013.11.038
    [49] McKinley C C, Thomas D J, LeVay L J, et al. Nd isotopic structure of the Pacific Ocean 40-10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma[J]. Earth and Planetary Science Letters, 2019, 521: 139−149. doi: 10.1016/j.jpgl.2019.06.009
    [50] Van De Flierdt T, Frank M, Halliday A N, et al. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years[J]. Paleoceanography and Paleoclimatology, 2004, 19(1): PA1020.
    [51] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 1−12.
    [52] Van De Flierdt T, Frank M, Lee D C, et al. New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 2004, 68(19): 3827−3843. doi: 10.1016/j.gca.2004.03.009
    [53] Van De Flierdt T, Frank M, Halliday A N, et al. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget-a combined Pb-Hf-Nd isotope approach[J]. Earth and Planetary Science Letters, 2004, 222(1): 259−273. doi: 10.1016/j.jpgl.2004.02.025
    [54] Le Houedec S, Meynadier L, Allègre C J. Seawater Nd isotope variation in the Western Pacific Ocean since 80 Ma (ODP 807, Ontong Java Plateau)[J]. Marine Geology, 2016, 380: 138−147. doi: 10.1016/j.margeo.2016.07.005
    [55] Hu Rong, Chen Tianyu, Ling Hongfei. Late Cenozoic history of deep water circulation in the western North Pacific: Evidence from Nd isotopes of ferromanganese crusts[J]. Chinese Science Bulletin, 2012, 57(31): 4077−4086. doi: 10.1007/s11434-012-5322-9
    [56] Anderson C H, Murray R W, Dunlea A G, et al. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma[J]. Geological Magazine, 2019, 157(5): 806−817.
    [57] Pettke T, Halliday A N, Rea D K. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J]. Paleoceanography and Paleoclimatology, 2002, 17(3): 3-1−3-13.
    [58] Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159−195. doi: 10.1029/93RG03257
    [59] Turnau R, Ledbetter M T. Deep circulation changes in the south Atlantic ocean: response to initiation of northern hemisphere glaciation[J]. Paleoceanography and Paleoclimatology, 1989, 4(5): 565−583.
    [60] Bell D B, Jung S J A, Kroon D. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends[J]. Quaternary Science Reviews, 2015, 123: 265−282. doi: 10.1016/j.quascirev.2015.06.026
    [61] Burton K W, Ling Hongfei, O’Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic[J]. Nature, 1997, 386(6623): 382−385. doi: 10.1038/386382a0
    [62] Raymo M E, Oppo D W, Curry W. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective[J]. Paleoceanography and Paleoclimatology, 1997, 12(4): 546−559.
    [63] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117−122. doi: 10.1038/359117a0
    [64] Frank M, Whiteley N, Kasten S, et al. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts[J]. Paleoceanography and Paleoclimatology, 2002, 17(2): 12-11−12-19.
    [65] Kwiek P B, Ravelo A C. Pacific Ocean intermediate and deep water circulation during the Pliocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 191−217. doi: 10.1016/S0031-0182(99)00111-X
    [66] Ravelo A C, Andreasen D H. Enhanced circulation during a warm period[J]. Geophysical Research Letters, 2000, 27(7): 1001−1004. doi: 10.1029/1999GL007000
    [67] Burls N J, Fedorov A V, Sigman D M, et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene[J]. Science Advances, 2017, 3(9): e1700156. doi: 10.1126/sciadv.1700156
    [68] Rahmstorf S. Ocean circulation and climate during the past 120, 000 years[J]. Nature, 2002, 419(6903): 207−214. doi: 10.1038/nature01090
    [69] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806): 859−869. doi: 10.1038/35038000
    [70] Basak C, Fröllje H, Lamy F, et al. Breakup of last glacial deep stratification in the South Pacific[J]. Science, 2018, 359(6378): 900−904. doi: 10.1126/science.aao2473
    [71] Martínez-García A, Sigman D M, Ren Haojia, et al. Iron fertilization of the Subantarctic ocean during the last ice age[J]. Science, 2014, 343(6177): 1347−1350. doi: 10.1126/science.1246848
    [72] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443−1448. doi: 10.1126/science.1167441
    [73] Chen T Y, Robinson L F, Burke A, et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 2015, 349(6255): 1537−1541. doi: 10.1126/science.aac6159
    [74] Sarnthein M, Schneider B, Grootes P M. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean[J]. Climate of the Past, 2013, 9(6): 2595−2614. doi: 10.5194/cp-9-2595-2013
    [75] Wan Sui, Jian Zhimin, Gong Xun, et al. Deep water [ ${\rm{CO}}_3^{2-} $] and circulation in the south China sea over the last glacial cycle[J]. Quaternary Science Reviews, 2020, 243: 106499. doi: 10.1016/j.quascirev.2020.106499
    [76] Ronge T A, Tiedemann R, Lamy F, et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool[J]. Nature Communications, 2016, 7: 11487. doi: 10.1038/ncomms11487
    [77] Hu Rong, Piotrowski A M. Neodymium isotope evidence for glacial-interglacial variability of deepwater transit time in the Pacific Ocean[J]. Nature Communications, 2018, 9(1): 4709. doi: 10.1038/s41467-018-07079-z
    [78] Pöppelmeier F, Blaser P, Gutjahr M, et al. Northern-sourced water dominated the Atlantic Ocean during the Last Glacial Maximum[J]. Geology, 2020, 48(8): 826−829. doi: 10.1130/G47628.1
    [79] Liu Ruolin, Wang Maoyu, Li Weiqiang, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the late quaternary[J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.
    [80] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2): 542−549. doi: 10.1002/2014GL061957
    [81] Marcott S, Bauska T, Buizert C, et al. Centennial-scale changes in the global carbon cycle during the last deglaciation[J]. Nature, 2014, 514(7524): 616−619. doi: 10.1038/nature13799
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-12

目录

    /

    返回文章
    返回