留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海莱州湾沉积物中锰、铁、硫成岩循环及铁和锰扩散通量研究

孙蓓蓓 任建华 张嘉伟 孙文轩 李铁 朱茂旭

孙蓓蓓,任建华,张嘉伟,等. 渤海莱州湾沉积物中锰、铁、硫成岩循环及铁和锰扩散通量研究[J]. 海洋学报,2024,46(x):1–13
引用本文: 孙蓓蓓,任建华,张嘉伟,等. 渤海莱州湾沉积物中锰、铁、硫成岩循环及铁和锰扩散通量研究[J]. 海洋学报,2024,46(x):1–13
Sun Beibei,Ren Jianhua,Zhang Jiawei, et al. Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea[J]. Haiyang Xuebao,2024, 46(x):1–13
Citation: Sun Beibei,Ren Jianhua,Zhang Jiawei, et al. Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea[J]. Haiyang Xuebao,2024, 46(x):1–13

渤海莱州湾沉积物中锰、铁、硫成岩循环及铁和锰扩散通量研究

基金项目: 国家自然科学基金(42176041);崂山实验室“十四五”重大项目:海洋环境新污染物防治与水环境安全(2022QNLM040002)。
详细信息
    作者简介:

    孙蓓蓓(1998—),女,山东省聊城人,从事海洋化学研究。E-mail:sun@stu.ouc.edu.cn

    通讯作者:

    朱茂旭(1967—),男,湖南省澧县人,教授,从事海洋化学研究。E-mail: zhumaoxu@ouc.edu.cn

Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea

  • 摘要: 通过莱州湾四个站点沉积物柱样固相和孔隙水化学分析,揭示了Mn、Fe、S的成岩循环及其对陆源输入和人为扰动的响应。结果表明,水体富营养化未导致沉积物中有机碳富集,陆源低活性有机碳输入以及自然过程和人为扰动导致的沉积物强烈再悬浮致使沉积物有机碳含量和活性低,不利于硫酸盐还原,沉积物中总还原无机硫含量低(0.28~88 μmol/g)。孔隙水Mn2+主要来源于无定形或弱晶型锰氧化物的还原溶解,而MnCO3沉淀则是深部(> 10 cm)孔隙水Mn2+消耗的主要机制。有机碳低活性以及沉积物强烈再悬浮有利于铁异化还原,该路径对有机碳厌氧矿化的平均贡献约为51%。在受黄河输入影响显著的站点(S6),动态的沉积环境促进了锰氧化还原,但抑制了铁和硫酸盐还原。莱州湾沉积物孔隙水Mn2+和Fe2+扩散通量位于其它受河流输入影响海域的低值端,这可归因于有机碳的低活性。
  • 图  1  莱州湾采样站点图

    Fig.  1  Sampling sites in laizhou bay

    图  2  四个沉积物柱样中粒度的垂直分布

    Fig.  2  Vertical profiles of grain-size distributions in four sediment cores

    图  3  四个沉积物柱样中TOC、TN和δ13C的垂直分布

    Fig.  3  Vertical profiles of TOC, TN, and δ13C in four sediment cores

    图  4  四个沉积物柱样中固相锰形态垂直分布

    Fig.  4  Vertical profiles of solid-phase mn forms in four sediment cores

    图  5  四个沉积物柱样中铁形态的垂直分布

    Fig.  5  Vertical profiles of fe forms in four sediment cores

    图  6  四个沉积物柱样中固相还原硫形态垂直分布

    Fig.  6  Vertical profiles of solid-phase reduced sulfur forms in four sediment cores

    图  7  沉积物柱样中孔隙水Mn2+和Fe2+浓度剖面(圆圈)、拟合浓度剖面(实线)以及拟合生成速率(虚线)

    Fig.  7  Vertical profiles of porewater Mn2+ and Fe2+ (circle), model-fitted concentration (solid line), and production rate (dashed line)

    图  8  沉积物柱样中TN与TOC相关性

    Fig.  8  Correlation between TN and TOC in sediment cores

    图  9  孔隙水Mn2+和Fe2+扩散通量与表层沉积物活性锰和活性铁的相关性

    Fig.  9  Correlations of diffusive flux of porewater Mn2+ and Fe2+ with extractable Mn and Fe contents in surface sediments

    图  10  沉积物中TRIS与TOC的含量关系(虚线为正常海洋沉积物TOC/TRIS质量比平均值2.8[63]

    Fig.  10  Relationship between TRIS and TOC in sediment cores (the dashed line shows the mean TOC/TRIS mass ratio of 2.8 for normal marine sediments)

    表  1  PROFILE拟合得到的孔隙水Mn2+和Fe2+深度积分生成速率和扩散通量

    Tab.  1  Depth-integrated rates of porewater Mn2+ and Fe2+ production, and diffusive fluxes fitted by PROFILE

    站点 12 cm深度的深度积分速率/
    nmol cm−2 d−1
    扩散通量/
    μmol m−2 d−1
    Fe2+ Mn2+ Fe2+ Mn2+
    S6 0.5 6.0 −1.0 −62.1
    R4 1.3 2.6 −12.6 −14.2
    N6 6.9 4.4 −38.9 −39.8
    S5 1.9 5.7 −17.8 −53.7
    下载: 导出CSV
  • [1] Konhauser K. Introduction to Geomicrobiology[M]. Malden: Blackwell Publishing, 2007. (查阅网上资料, 未找到本条文献相关年份信息, 请确认)
    [2] Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.
    [3] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1−220. doi: 10.7185/geochempersp.1.1
    [4] Estes E R, Andeer P F, Nordlund D, et al. Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments[J]. Geobiology, 2017, 15(1): 158−172. doi: 10.1111/gbi.12195
    [5] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
    [6] Wang D, Zhu M X, Yang G P, et al. Reactive iron and iron‐bound organic carbon in surface sediments of the river‐dominated Bohai Sea (China) Versus the Southern Yellow Sea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(1): 79−98. doi: 10.1029/2018JG004722
    [7] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883. doi: 10.1016/0016-7037(93)90340-3
    [8] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[M]//Schink B. Advances in Microbial Ecology. Boston: Springer, 2000: 41-84.
    [9] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 315(1531): 25−38.
    [10] Reithmaier G M S, Johnston S G, Junginger T, et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006785. doi: 10.1029/2020GB006785
    [11] Burdige D J. Estuarine and coastal sediments—Coupled Biogeochemical Cycling[J]. Treatise on estuarine and coastal science, 2011, 5: 279−316.
    [12] Kraal P, Burton E D, Rose A L, et al. Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary[J]. Environmental Science & Technology, 2013, 47(7): 3114−3121.
    [13] Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293. doi: 10.5194/bg-6-1273-2009
    [14] Aller R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815−835. doi: 10.1357/0022240042880837
    [15] van de Velde S, Van Lancker V, Hidalgo-Martinez S, et al. Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state[J]. Scientific Reports, 2018, 8(1): 5582. doi: 10.1038/s41598-018-23925-y
    [16] Wei Y Q, Cui H W, Hu Q J, et al. Eutrophication status assessment in the Laizhou Bay, Bohai Sea: further evidence for the ecosystem degradation[J]. Marine Pollution Bulletin, 2022, 181: 113867. doi: 10.1016/j.marpolbul.2022.113867
    [17] Zhang F F, Fu H R, Lou H W, et al. Assessment of eutrophication from Xiaoqing River estuary to Laizhou Bay: further warning of ecosystem degradation in typically polluted estuary[J]. Marine Pollution Bulletin, 2023, 193: 115209. doi: 10.1016/j.marpolbul.2023.115209
    [18] Shen C C, Zheng W, Shi H H, et al. Assessment and regulation of ocean health based on ecosystem services: case study in the Laizhou Bay, China[J]. Acta Oceanologica Sinica, 2015, 34(12): 61−66. doi: 10.1007/s13131-015-0777-6
    [19] Zhuang W, Gao X L. Distributions, sources and ecological risk assessment of arsenic and mercury in the surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea[J]. Marine Pollution Bulletin, 2015, 99(1-2): 320−327. doi: 10.1016/j.marpolbul.2015.07.037
    [20] Xing L M, Liu H F, Bolster D. Statistical-physical method for simulating the transport of microplastic-antibiotic compound pollutants in typical bay area[J]. Environmental Pollution, 2024, 344: 123339. doi: 10.1016/j.envpol.2024.123339
    [21] Gao X L, Li P M, Chen C T A. Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results[J]. Marine Pollution Bulletin, 2013, 72(1): 281−288. doi: 10.1016/j.marpolbul.2013.02.007
    [22] Sheng Y Q, Sun Q Y, Shi W J, et al. Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China[J]. Environmental Earth Sciences, 2015, 74(2): 1151−1160. doi: 10.1007/s12665-015-4101-8
    [23] 中国海湾志编纂委员会. 中国海湾志-第三分册(山东半岛北部和东部海湾)[M]. 北京: 海洋出版社, 1991: 50−51.

    Compilation Committee of Gulf Records of China. Bays of China. Volume 3 (Bays of Northern and Eastern Shandong Peninsula)[M]. Beijing: Ocean Press, 1991: 50−51. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [24] 梁生康, 李姗姗, 马浩阳, 等. 基于陆海同步调查的莱州湾营养盐时空分布及限制因子分析[J]. 中国海洋大学学报, 2022, 52(8): 97−110.

    Liang S K, Li S S, Ma H Y, et al. Spatial-temporal distributions and limiting factors of nutrients in Laizhou Bay based on land-sea synchronous survey[J]. Periodical of Ocean University of China, 2022, 52(8): 97−110.
    [25] Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport in the Yellow River[J]. Biogeosciences, 2013, 10(4): 2513−2524. doi: 10.5194/bg-10-2513-2013
    [26] Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108: 68−80. doi: 10.1016/j.jseaes.2015.04.028
    [27] Zhou L Y, Liu J, Saito Y, et al. Sediment budget of the Yellow River delta during 1959-2012, estimated from morphological changes and accumulation rates[J]. Marine Geology, 2020, 430: 106363. doi: 10.1016/j.margeo.2020.106363
    [28] Zhou L Y, Liu J, Saito Y, et al. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)[J]. Geo-Marine Letters, 2016, 36(4): 247−258. doi: 10.1007/s00367-016-0442-x
    [29] Lenstra W K, Klomp R, Molema F, et al. A sequential extraction procedure for particulate manganese and its application to coastal marine sediments[J]. Chemical Geology, 2021, 584: 120538. doi: 10.1016/j.chemgeo.2021.120538
    [30] Burdige D J, Christensen J P. Iron biogeochemistry in sediments on the western continental shelf of the Antarctic Peninsula[J]. Geochimica et Cosmochimica Acta, 2022, 326: 288−312. doi: 10.1016/j.gca.2022.03.013
    [31] Cornell R M, Giovanoli R. Acid dissolution of akaganiéite and lepidocrocite: the effect on crystal morphology[J]. Clays and Clay Minerals, 1988, 36(5): 385−390. doi: 10.1346/CCMN.1988.0360501
    [32] Stookey L L. Ferrozine-a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 1970, 42(7): 779−781. doi: 10.1021/ac60289a016
    [33] Burton E D, Sullivan L A, Bush R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9): 2759−2766. doi: 10.1016/j.apgeochem.2008.07.007
    [34] Qin S S, Zhu M X, Yang G P, et al. Atypical diagenesis of sulfur and iron in sediments of the river-dominated Bohai Sea (China)[J]. Journal of Marine Systems, 2019, 189: 116−126. doi: 10.1016/j.jmarsys.2018.10.004
    [35] Cline J D. Spectrophotometric determination of hydrogen sulfide in natural waters[J]. Limnology and Oceanography, 1969, 14(3): 454−458. doi: 10.4319/lo.1969.14.3.0454
    [36] Berg P, Risgaard-Petersen N, Rysgaard S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7): 1500−1510. doi: 10.4319/lo.1998.43.7.1500
    [37] Boudreau B P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments[M]. Berlin: Springer, 1997.
    [38] Boudreau B P. Is burial velocity a master parameter for bioturbation?[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1243−1249. doi: 10.1016/0016-7037(94)90378-6
    [39] Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3/4): 141−197.
    [40] Goldhaber M B. Sulfur-rich Sediments[J]. Treatise on Geochemistry, 2003, 7: 257−288.
    [41] Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1/2): 117−137.
    [42] Wang X C, Ma H Q, Li R H, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: the Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2025.
    [43] Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3/4): 197−211.
    [44] Kao S J, Lin F J, Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1203−1217.
    [45] Liu X, Huang B Q, Huang Q, et al. Seasonal phytoplankton response to physical processes in the southern Yellow Sea[J]. Journal of Sea Research, 2015, 95: 45−55. doi: 10.1016/j.seares.2014.10.017
    [46] Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879−893. doi: 10.1016/0016-7037(94)90512-6
    [47] Jilbert T, Asmala E, Schröder C, et al. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments[J]. Biogeosciences, 2018, 15(4): 1243−1271. doi: 10.5194/bg-15-1243-2018
    [48] Zhu M X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811−2828. doi: 10.1002/2016JG003391
    [49] Jensen M M, Thamdrup B, Rysgaard S, et al. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition[J]. Biogeochemistry, 2003, 65(3): 295−317. doi: 10.1023/A:1026261303494
    [50] Ma W W, Zhu M X, Yang G P, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410. doi: 10.1016/j.marpolbul.2017.07.056
    [51] McManus J, Berelson W M, Severmann S, et al. Benthic manganese fluxes along the Oregon–California continental shelf and slope[J]. Continental Shelf Research, 2012, 43: 71−85. doi: 10.1016/j.csr.2012.04.016
    [52] Severmann S, McManus J, Berelson W M, et al. The continental shelf benthic iron flux and its isotope composition[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3984−4004. doi: 10.1016/j.gca.2010.04.022
    [53] Shi X M, Wei L, Hong Q Q, et al. Large benthic fluxes of dissolved iron in China coastal seas revealed by 224Ra/228Th disequilibria[J]. Geochimica et Cosmochimica Acta, 2019, 260: 49−61. doi: 10.1016/j.gca.2019.06.026
    [54] Warnken K W, Gill G A, Griffin L L, et al. Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas[J]. Marine Chemistry, 2001, 73(3/4): 215−231.
    [55] Lenstra W K, Hermans M, Séguret M J M, et al. The shelf-to-basin iron shuttle in the Black Sea revisited[J]. Chemical Geology, 2019, 511: 314−341. doi: 10.1016/j.chemgeo.2018.10.024
    [56] Richard D, Sundby B, Mucci A. Kinetics of manganese adsorption, desorption, and oxidation in coastal marine sediments[J]. Limnology and Oceanography, 2013, 58(3): 987−996. doi: 10.4319/lo.2013.58.3.0987
    [57] Lenstra W K, Séguret M J M, Behrends T, et al. Controls on the shuttling of manganese over the northwestern Black Sea shelf and its fate in the euxinic deep basin[J]. Geochimica et Cosmochimica Acta, 2020, 273: 177−204. doi: 10.1016/j.gca.2020.01.031
    [58] Lenstra W K, van Helmond N A G M, Żygadłowska O M, et al. Sediments as a source of iron, manganese, cobalt and nickel to continental shelf waters (Louisiana, Gulf of Mexico)[J]. Frontiers in Marine Science, 2022, 9: 811953. doi: 10.3389/fmars.2022.811953
    [59] Wehrmann L M, Formolo M J, Owens J D, et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism[J]. Geochimica et Cosmochimica Acta, 2014, 141: 628−655. doi: 10.1016/j.gca.2014.06.007
    [60] Luther III G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2839−2849. doi: 10.1016/0016-7037(91)90449-F
    [61] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671−4692. doi: 10.1016/j.gca.2010.05.008
    [62] Ma W W, Zhu M X, Yang G P, et al. Diagenesis of sulfur, iron and phosphorus in sediments of an urban bay impacted by multiple anthropogenic perturbations[J]. Marine Pollution Bulletin, 2019, 146: 366−376. doi: 10.1016/j.marpolbul.2019.06.081
    [63] Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks[J]. Geology, 1984, 12(6): 365−368. doi: 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-08-19

目录

    /

    返回文章
    返回