留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口、黄河口及黄海近岸沉积物耗氧温度依赖性研究

李雅妮 梁坤瑞 宋国栋 刘素美

李雅妮,梁坤瑞,宋国栋,等. 长江口、黄河口及黄海近岸沉积物耗氧温度依赖性研究[J]. 海洋学报,2025,47(5):1–9
引用本文: 李雅妮,梁坤瑞,宋国栋,等. 长江口、黄河口及黄海近岸沉积物耗氧温度依赖性研究[J]. 海洋学报,2025,47(5):1–9
Li Yani,Liang Kunrui,Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao,2025, 47(5):1–9
Citation: Li Yani,Liang Kunrui,Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao,2025, 47(5):1–9

长江口、黄河口及黄海近岸沉积物耗氧温度依赖性研究

基金项目: 国家自然科学基金(42376044, 42076035, U1806211); 泰山学者项目。
详细信息
    作者简介:

    李雅妮(2000—),女,内蒙古乌兰察布市人,从事海洋生物地球化学研究。E-mail:liyani@stu.ouc.edu.cn

    通讯作者:

    宋国栋,副教授,主要从事海洋生物地球化学研究。E-mail: gsong@ouc.edu.cn

Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore

  • 摘要: 沉积物耗氧(sediment oxygen consumption,SOC)是量化沉积物中有机碳矿化的关键参数,是了解海洋碳循环的核心,边缘海沉积物耗氧约占全球海洋沉积物耗氧的60%。温度是调控沉积物中微生物呼吸的重要控制因素。然而不同河口及近岸海区沉积物耗氧对温度的响应差异研究较为匮乏,在全球变暖导致沿海海洋海温升高的背景下,这会导致对沉积物耗氧和矿化理解的偏差。本研究选取长江口、黄河口以及黄海近岸沉积物,在2−45 ℃温度跨度以2−3 ℃的温度梯度测定了沉积物耗氧速率对温度的响应。结果表明,3个海域沉积物耗氧随温度呈指数型上升;长江口沉积物耗氧的表观活化能(Eaʹ)为69~77 kJ/mol,温度系数(Q10(15−25℃))在2.6~3.0间,与德国Weser河口沉积物耗氧Q10(0−10℃)相近;黄河口及黄海近岸沉积物耗氧的Eaʹ为51~58 kJ/mol,Q10(15−25℃)值在2.0~2.3间,与加拿大海湾浅层沉积物Q10(10−20℃)相近。长江口沉积物耗氧Eaʹ与Q10(15−25℃)显著高于黄河口及黄海近岸(ANOVA, P<0.01),归因于长江口不稳定型有机碳含量较多从而底物可利用性升高。研究站位沉积物耗氧Q10(15−25℃)整体范围在2.5±0.3间,与全球尺度下沉积物耗氧Q10(2.4±0.4)基本一致,符合大部分生物反应Q10为2−3的范围。本文系统研究了长江口、黄河口及黄海近岸沉积物耗氧的温度响应及差异,为典型河口及近岸沉积物碳矿化与全球气候变暖之间的反馈关系以及模型预测提供了数据支撑。
  • 图  1  沉积物采样站位(A5-3, A7-1, A7-2为长江口站位,HD-5为黄河口站位,黄海近岸分别取高潮位与低潮位两份沉积物,站位图由Ocean Data View绘制)

    Fig.  1  Sediment sampling stations (A5-3, A7-1, A7-2 are stations at the Yangtze River Estuary, and HD-5 is a station at the Yellow River Estuary; two sediment samples were taken nearshore of the Yellow Sea at high tide and low tide, and the station maps were plotted by Ocean Data View).

    图  2  长江口站位2−45 ℃沉积物耗氧速率温度依赖性(a, b, c)及沉积物耗氧速率-温度阿伦尼乌斯拟合曲线(d, e, f)

    Fig.  2  Temperature dependence of SOC from 2−45 ℃ at the Yangtze River Estuary station (a, b, c) and Arrhenius fit curves (d, e, f)

    图  3  黄河口站位沉积物耗氧速率温度依赖性(a)及沉积物耗氧速率-温度阿伦尼乌斯拟合曲线(b)

    Fig.  3  Temperature dependence of SOC from 2-45 ℃ at the Yellow River Estuary station (a) and Arrhenius fit curves (b).

    图  4  黄海近岸高潮位、低潮位沉积物耗氧速率温度依赖性(a, b)及沉积物耗氧速率-温度阿伦尼乌斯拟合曲线(c, d)

    Fig.  4  Temperature dependence of SOC at high-tide and low-tide levels at the Yellow Sea nearshore station (a, b) and Arrhenius fitting curves (c, d).

    图  5  长江口、黄河口及黄海近岸沉积物耗氧温度系数(Q10(15−25℃)

    Fig.  5  Comparison of Q10(15−25℃) from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore.

    图  6  整理全球热带、温带和寒带沉积物耗氧速率的温度依赖系数文献值。a. 全球海洋温度分布图,数据源于https://www.ncei.noaa.gov/access/world-ocean-atlas-2023f/bin/woa23f.pl?parameterOption=t;b. 不同纬度地区沉积物耗氧速率温度依赖系数分布散点图(虚线为Q10均值,灰色覆盖区域表示Q10均值±标准差)。

    Fig.  6  Global literature values for the temperature dependence (Q10) of SOC rates across tropical, temperate, and polar regions. a. Global sea surface temperature distribution, with data sourced from https://www.ncei.noaa.gov/access/world-ocean-atlas-2023f/bin/woa23f.pl?parameterOption=t. b. Scatter plot showing the distribution of Q10 values for sediment oxygen consumption rates across different latitudes. (The dashed line represents the mean Q10 value, and the gray-shaded area indicates the mean Q10 ± standard deviation.)

    表  1  长江口,黄河口和黄海近岸上覆水及沉积物样品基本特征

    Tab.  1  Basic characteristics of overlying water and sediment samples from the Yangtze River Estuaries, the Yellow River Estuaries and the Yellow Sea nearshore

    站位深度/m温度/℃盐度沉积物类型颜色气味
    A5-326.311.532.1软泥灰黑色微臭
    A7-111.310.426.9软泥灰黑色微臭
    A7-216.210.328.7软泥灰黑色微臭
    HD-59.510.426.9细砂红棕色无味
    黄海近岸低潮位05.030.8粗颗粒砂黄褐色无味
    黄海近岸高潮位05.030.8粗颗粒砂黄褐色无味
    下载: 导出CSV
  • [1] Lima F P, Wethey D S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming[J]. Nature Communications, 2012, 3(1): 704. doi: 10.1038/ncomms1713
    [2] Halpern B S, Walbridge S, Selkoe K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948−952. doi: 10.1126/science.1149345
    [3] Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1010.
    [4] Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243−289 doi: 10.1080/17451000801888726
    [5] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115.
    [6] Jørgensen B B, Wenzhöfer F, Egger M, et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228: 103987. doi: 10.1016/j.earscirev.2022.103987
    [7] Pamatmat M M. Oxygen consumption by the seabed. VI. seasonal cycle of chemical oxidation and respiration in Puget Sound[J]. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 1971, 56(5): 769−793. doi: 10.1002/iroh.19710560505
    [8] Jørgensen B B, Sørensen J. Seasonal cycles of O2, NO3- and SO42- reduction in estuarine sediments: the significance of an NO3- reduction maximum in spring[J]. Marine Ecology Progress Series, 1985, 24: 65−74. doi: 10.3354/meps024065
    [9] Westrich J T, Berner R A. The effect of temperature on rates of sulfate reduction in marine sediments[J]. Geomicrobiology Journal, 1988, 6(2): 99−117. doi: 10.1080/01490458809377828
    [10] Jørgensen B B. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)[J]. Limnology and Oceanography, 1977, 22(5): 814−832. doi: 10.4319/lo.1977.22.5.0814
    [11] Abdollahi H, Nedwell D B. Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment[J]. Microbial Ecology, 1979, 5(1): 73−79. doi: 10.1007/BF02010581
    [12] Aller R C, Yingst J Y. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA[J]. Marine Biology, 1980, 56(1): 29−42. doi: 10.1007/BF00390591
    [13] Thamdrup B, Fleischer S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191−199. doi: 10.3354/ame015191
    [14] Thamdrup B, Hansen J, Jørgensen B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189−200. doi: 10.1111/j.1574-6941.1998.tb00472.x
    [15] Den Heyer C, Kalff J. Organic matter mineralization rates in sediments: a within- and among-lake study[J]. Limnology and Oceanography, 1998, 43(4): 695−705. doi: 10.4319/lo.1998.43.4.0695
    [16] De Klein J J M, Overbeek C C, Jørgensen J C, et al. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments[J]. Wetlands, 2017, 37(5): 975−983. doi: 10.1007/s13157-017-0933-1
    [17] Edberg N, Hofsten B V. Oxygen uptake of bottom sediments studied in situ and in the laboratory[J]. Water Research, 1973, 7(9): 1285−1294. doi: 10.1016/0043-1354(73)90005-5
    [18] Granéli W. Sediment oxygen uptake in South Swedish lakes[J]. Oikos, 1978, 30(1): 7−16. doi: 10.2307/3543519
    [19] Cardoso S J, Enrich-Prast A, Pace M L, et al. Do models of organic carbon mineralization extrapolate to warmer tropical sediments?[J]. Limnology and Oceanography, 2014, 59(1): 48−54. doi: 10.4319/lo.2014.59.1.0048
    [20] Arnosti C, Jørgensen B B, Sagemann J, et al. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction[J]. Marine Ecology Progress Series, 1998, 165: 59−70. doi: 10.3354/meps165059
    [21] 张风菊, 桂智凡, 薛滨, 等. 温度对呼伦湖沉积物有机碳埋藏及矿化影响研究[J]. 第四纪研究, 2020, 40(5): 1240−1250.

    Zhang Fengju, Gui Zhifan, Xue Bin, et al. Effects of temperature on organic carbon burial and mineralization in sediments of Hulun Lake[J]. Quaternary Sciences, 2020, 40(5): 1240−1250.
    [22] Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1): 123−145. doi: 10.1146/annurev-marine-120709-142723
    [23] Zhang Jing, Huang Weiwen, Shi Maochong. Huanghe (Yellow River) and its estuary: sediment origin, transport and deposition[J]. Journal of Hydrology, 1990, 120(1/4): 203−223.
    [24] Wang Fushun, Wang Yuchun, Zhang Jing, et al. Human impact on the historical change of CO2 degassing flux in River Changjiang[J]. Geochemical Transactions, 2007, 8: 7. doi: 10.1186/1467-4866-8-7
    [25] Wang Xuchen, Luo Chunle, Ge Tiantian, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1358−1374. doi: 10.1002/lno.10301
    [26] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 444−447.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999: 444−447.
    [27] 石学法, 吴斌, 乔淑卿, 等. 中国东部近海沉积有机碳的分布、埋藏及碳汇效应[J]. 中国科学: 地球科学, 2024, 54(10): 3113−3133

    Shi Xuefa, Wu Bin, Qiao Shuqing, et al. Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas[J]. Scientia Sinica Terrae, 54(10): 3113−3133
    [28] Wu Ying, Eglinton T, Yang Liyang, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1495−1507. doi: 10.1002/2013JG002286
    [29] Yu Meng, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309: 16−30. doi: 10.1016/j.gca.2021.06.018
    [30] Hu Limin, Shi Xuefa, Bai Yazhi, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50−58. doi: 10.1016/j.jmarsys.2015.10.018
    [31] Hansen J W, Thamdrup B, Jørgensen B B. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies[J]. Marine Ecology Progress Series, 2000, 208: 273−282. doi: 10.3354/meps208273
    [32] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3): 1312−1318. doi: 10.1128/AEM.68.3.1312-1318.2002
    [33] Song Guodong, Liu Sumei. , Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 53−63. doi: 10.1016/j.dsr2.2015.04.012
    [34] Li W K W, Dickie P M. Temperature characteristics of photosynthetic and heterotrophic activities: seasonal variations in temperate microbial plankton[J]. Applied and Environmental Microbiology, 1987, 53(10): 2282−2295. doi: 10.1128/aem.53.10.2282-2295.1987
    [35] Yuan Huamao, Liu Zhigang, Song Jinming, et al. Studies on the regional feature of organic carbon in sediments off the Huanghe River Estuary waters[J]. Acta Oceanologica Sinica, 2004, 23(1): 129−134.
    [36] Zhang Haiyan, Zhao Liang, Sun Yao, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149−157. doi: 10.1016/j.ecss.2017.05.006
    [37] 朱若思, 宋国栋, 刘素美. 黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素[J]. 海洋学报, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074

    Zhu Ruosi, Song Guodong, Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074
    [38] 陈浈雄, 张超, 李全, 等. 土壤有机碳分解温度敏感性的影响机制研究进展[J]. 应用生态学报, 2023, 34(9): 2575−2584.

    Chen Zhenxiong, Zhang Chao, Li Quan, et al. Mechanism underlying temperature sensitivity of soil organic carbon decomposition: a review[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2575−2584.
    [39] Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1−11. doi: 10.1016/j.csr.2014.08.010
    [40] Zhao Bin, Yao Peng, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China Marginal Seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. doi: 10.1029/2020GB006608
    [41] Hou Pengfei, Yu Meng, Zhao Meixun, et al. Terrestrial biomolecular burial efficiencies on continental margins[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2019JG005520. doi: 10.1029/2019JG005520
    [42] Yu Meng, Eglinton T I, Hou Pengfei, et al. Apparent aging and rejuvenation of terrestrial organic carbon along the river-estuary-coastal ocean continuum[J]. Geophysical Research Letters, 2024, 51(8): e2023GL107855. doi: 10.1029/2023GL107855
    [43] Zhao Bin, Yao Peng, Bianchi T S, et al. Contrasting controls of particulate organic carbon composition and age from riverine to coastal sediments of Eastern China Marginal Seas[J]. Chemical Geology, 2023, 624: 121429. doi: 10.1016/j.chemgeo.2023.121429
    [44] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075−1090 doi: 10.1016/0016-7037(79)90095-4
    [45] Giles H, Pilditch C A, Nodder S D, et al. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf[J]. Continental Shelf Research, 2007, 27(18): 2373−2388. doi: 10.1016/j.csr.2007.06.007
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2025-02-28
  • 网络出版日期:  2025-04-28

目录

    /

    返回文章
    返回