The difference in thermal tolerance between Acropora muricata and Acropora hyacinthus
-
摘要: 全球变暖导致珊瑚大规模白化事件频发,珊瑚礁生态系统加速退化。国际上通常采用珊瑚移植的方式来修复退化的珊瑚礁,其中移植的珊瑚中鹿角珊瑚(Acropora)占大部分。然而,快速生长的枝状鹿角珊瑚对热更敏感,影响其在日益变暖的海洋环境中的修复效果。为了了解鹿角珊瑚的高温响应模式以及耐热性差异,本研究对广西涠洲岛美丽鹿角珊瑚(Acropora muricata)和风信子鹿角珊瑚(Acropora hyacinthus)进行了高温胁迫实验。通过生理生化指标分析,高温胁迫后,美丽鹿角珊瑚触手收缩、颜色变淡,抗氧化物(超氧化物歧化酶、还原型谷胱甘肽、过氧化氢酶)、铵同化酶(谷氨酰胺合成酶)以及半胱氨酸天冬氨酸蛋白酶3(caspase-3)的活性(含量)水平表现为先升后降的趋势,风信子鹿角珊瑚的响应模式也几乎保持一致(除超氧化物歧化酶和谷氨酰胺合成酶外)。在34℃下,风信子鹿角珊瑚的生理指标表现更佳,超氧化物歧化酶、铵同化酶和caspase-3始终保持高活性及灵敏反应,意味着风信子鹿角珊瑚通过提高这些蛋白酶活性来抵抗高温环境,其比美丽鹿角珊瑚更具耐热性。本研究揭示了两种鹿角珊瑚高温胁迫下的生理响应模式,并比较了两者之间的耐热性差异,为耐热珊瑚挑选和珊瑚礁生态修复提供理论依据。Abstract: Global warming has led to frequent large-scale coral bleaching events, accelerating the degradation of coral reef ecosystems. Internationally, coral transplantation is commonly employed as a method to restore degraded coral reefs, with Acropora species constituting the majority of the transplanted corals. However, fast-growing branching Acropora corals are more sensitive to heat, which affects their restoration efficacy in the increasingly warming marine environment. To understand the thermal response patterns and thermal tolerance differences of Acropora, this study conducted high-temperature stress experiments on Acropora muricata and Acropora hyacinthus from Weizhou Island, Guangxi. Through the analysis of physiological and biochemical indicators, it was observed that after high-temperature stress, A. muricata exhibited tentacle retraction and color fading, and the activity levels of antioxidants (superoxide dismutase, glutathione, catalase), ammonium assimilation enzyme (glutamine synthetase), and cysteinyl aspartate specific proteinase-3 (caspase-3) showed a trend of initially increasing and then decreasing. A. hyacinthus showed a similar response pattern, except for superoxide dismutase and glutamine synthetase. At 34℃, A. hyacinthus performed better in physiological indicators, with superoxide dismutase, ammonium assimilation enzyme, and caspase-3 maintained high activity and sensitive response, indicating that A. hyacinthus resists high-temperature environments by increasing the activity of these proteases, and it is more heat-tolerant than A. muricata. This study revealed the physiological response patterns of the two Acropora species under high-temperature stress and compared their thermal tolerance differences, providing a theoretical basis for the selection of heat-tolerant corals and the ecological restoration of coral reefs.
-
Key words:
- Weizhou Island /
- Acropora /
- high-temperature stress /
- thermal tolerance /
- coral reef restoration
-
图 1 采样区域和实验方法
A.红色星形为具体采样海域,a1为美丽鹿角珊瑚苗圃,a2为风信子鹿角珊瑚苗圃;B. 2022年11月至2023年11月自然海区温度,采用HOBO水下温度计(Onset公司,美国)实测;C. 高温胁迫实验设计方法。
Fig. 1 Sampling locations and experimental method
Fig.1 A. The red star is the sampling area,a1 is the Acropora muricata nursery, a2 is the Acropora hyacinthus nursery; B. The natural sea temperature from November 2022 to November 2023 was measured by the HOBO underwater thermometer (Onset, USA); C. Method of heat-stress experiment design
图 3 两种鹿角珊瑚高温胁迫过程中生理指标变化误差线表示多次重复所得平均值的标准误差。方框里为双因素ANOVA方差分析温度(T)、珊瑚物种(S)及其交互关系(T×S)(*p<0.05,**p<0.01,***p<0.001)。不同小写字母表示温度处理之间的参数存在显著差异(p<0.05)。横线上的星号表示在同一温度下两种珊瑚之间存在显著差异(*p<0.05,**p<0.01,***p<0.001)。
Fig. 3 Changes of physiological indexes under heat-stress in two species of staghorn corals In the box are two-way ANOVA for temperature (T), coral species (S) and their interaction (T×S) (*p<0.05,**p<0.01,***p<0.001).Different lowercase letters indicate significant differences in parameters between temperature treatments(p<0.05). The asterisk on the line indicates a significant difference between the two corals at the same temperature(*p<0.05,**p<0.01,***p<0.001).
图 4 两种鹿角珊瑚高温胁迫过程中生化指标变化误差线表示多次重复所得平均值的标准误差。方框里为双因素ANOVA方差分析温度(T)、珊瑚物种(S)及其交互关系(T×S)(*p<0.05,**p<0.01,***p<0.001)。不同小写字母表示温度处理之间的参数存在显著差异(p<0.05)。横线上的星号表示在同一温度下两种珊瑚之间存在显著差异(*p<0.05,**p<0.01,***p<0.001)。
Fig. 4 Changes of biochemical indexes under heat-stress in two types of staghorn corals In the box are two-way ANOVA for temperature (T), coral species (S) and their interaction (T×S) (*p<0.05,**p<0.01,***p<0.001).Different lowercase letters indicate significant differences in parameters between temperature treatments(p<0.05). The asterisk on the line indicates a significant difference between the two corals at the same temperature(*p<0.05,**p<0.01,***p<0.001).
-
[1] Spalding M, Ravilious C, Green E P. World atlas of coral reefs[M]. Bethesda: University of California Press, 2003. [2] Bellwood D R, Streit R P, Brandl S J, et al. The meaning of the term 'function' in ecology: a coral reef perspective[J]. Functional Ecology, 2019, 33(6): 948−961. doi: 10.1111/1365-2435.13265 [3] Reaser J K, Pomerance R, Thomas P O. Coral bleaching and global climate change: scientitic findings and policy recommendations[J]. Conservation Biology, 2000, 14(5): 1500−1511. doi: 10.1046/j.1523-1739.2000.99145.x [4] Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707 [5] Reimer J D, Peixoto R S, Davies S W, et al. The fourth global coral bleaching event: where do we go from here?[J]. Coral Reefs, 2024, 43(4): 1121−1125. doi: 10.1007/s00338-024-02504-w [6] Eakin C M, Sweatman H P A, Brainard R E. The 2014-2017 global-scale coral bleaching event: insights and impacts[J]. Coral Reefs, 2019, 38: 539−545. doi: 10.1007/s00338-019-01844-2 [7] Hoegh-Guldberg O, Kennedy E V, Beyer H L, et al. Securing a long-term future for coral reefs[J]. Trends in Ecology & Evolution, 2018, 33(12): 936−944. [8] Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80−83. doi: 10.1126/science.aan8048 [9] Hooidonk R V, Maynard J, Grimsditch G, et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: climate policy implications, management applications, and regional seas summaries[R]. Nairobi, Kenya: United Nations Environment Programme, 2020. [10] 刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.Liu Xu. Responsive mechanism of reef-building coral rocks to temperature stress[D]. Nanning: Guangxi University, 2020. [11] 蒙林庆, 黄雯, 阳恩广, 等. 高温白化事件可提高涠洲岛澄黄滨珊瑚(Porites Lutea)的耐热性[J]. 海洋学报, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009Meng Linqing, Huang Wen, Yang Enguang, et al. High temperature bleaching events can increase thermal tolerance of Porites lutea in the Weizhou Island[J]. Haiyang Xuebao, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009 [12] Huang Wen, Xiao Zunyong, Liu Xu, et al. Short-term thermal acclimation improved the thermal tolerance of three species of scleractinian corals in the South China Sea[J]. Journal of Sea Research, 2024, 199: 102505. doi: 10.1016/j.seares.2024.102505 [13] Jin Y K, Lundgren P, Lutz A, et al. Genetic markers for antioxidant capacity in a reef-building coral[J]. Science Advances, 2016, 2(5): e1500842. doi: 10.1126/sciadv.1500842 [14] Marshall P A, Baird A H. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa[J]. Coral Reefs, 2000, 19(2): 155−163. doi: 10.1007/s003380000086 [15] Muir P R, Done T, Aguirre J D. High regional and intrageneric variation in susceptibility to mass bleaching in Indo-Pacific coral species[J]. Global Ecology and Biogeography, 2021, 30(9): 1889−1898. doi: 10.1111/geb.13353 [16] 张浴阳, 刘骋跃, 王丰国, 等. 典型近岸退化珊瑚礁的成功修复案例——蜈支洲珊瑚覆盖率的恢复[J]. 应用海洋学学报, 2021, 40(1): 26−33.Zhang Yuyang, Liu Chengyue, Wang Fengguo, et al. Successful restoration of typical degraded coastal coral reefs — a restoration of coral coverage at Wuzhizhou Island[J]. Journal of Applied Oceanography, 2021, 40(1): 26−33. [17] Williams S L, Sur C, Janetski N, et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia[J]. Restoration Ecology, 2019, 27(2): 447−456. doi: 10.1111/rec.12866 [18] Bayraktarov E, Banaszak A T, Maya P M, et al. Coral reef restoration efforts in Latin American countries and territories[J]. PLoS One, 2020, 15(8): e0228477. doi: 10.1371/journal.pone.0228477 [19] Morand G, Dixon S, Le Berre T. Identifying key factors for coral survival in reef restoration projects using deep learning[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32(11): 1758−1773. doi: 10.1002/aqc.3878 [20] Okubo N. Insights into coral restoration projects in Japan[J]. Ocean & Coastal Management, 2023, 232: 106371. [21] 王欣, 高霆炜, 陈骁, 等. 涠洲岛园艺式珊瑚苗圃的架设与移植[J]. 广西科学, 2017, 24(5): 462−467.Wang Xin, Gao Tingwei, Chen Xiao, et al. The construction and transplantation of coral gardening nursery in Weizhou Island[J]. Guangxi Sciences, 2017, 24(5): 462−467. [22] Harithsa S, Raghukumar C, Dalal S G. Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India[J]. Coral Reefs, 2005, 24: 463−474. doi: 10.1007/s00338-005-0008-2 [23] 李淑, 余克服, 陈天然, 等. 在细胞水平上对高温珊瑚白化的初步研究[J]. 热带海洋学报, 2011, 30(2): 33−38.Li Shu, Yu Kefu, Chen Tianran, et al. Preliminary study of coral bleaching at cellular level under thermal stress[J]. Journal of Tropical Oceanography, 2011, 30(2): 33−38. [24] 俞小鹏. 南海北部造礁珊瑚对高温胁迫的响应及适应性研究[D]. 南宁: 广西大学, 2022.Yu Xiaopeng. Response and adaptation of scleractinian coral to high temperature stress in the Northern South China Sea[D]. Nanning: Guangxi University, 2022. [25] E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. (查阅网上资料, 未找到本条文献信息, 请确认)E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. ( 查阅网上资料, 未找到本条文献信息, 请确认) [26] Jeffrey Dr S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie Und Physiologie Der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3 [27] Zhou Zhi, Ni Xingzhen, Wu Zhongjie, et al. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113074. doi: 10.1016/j.ecoenv.2021.113074 [28] Tang Xiaoyu, Yang Qingsong, Zhang Ying, et al. Validating the use of ROS-scavenging bacteria as probiotics to increase coral resilience to thermal stress[J]. Journal of Oceanology and Limnology, 2024, 42(4): 1242−1260. doi: 10.1007/s00343-024-3159-0 [29] Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine, 2018, 54(4): 287−293. doi: 10.1016/j.ajme.2017.09.001 [30] Nimse S B, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms[J]. RSC Advances, 2015, 5(35): 27986−28006. doi: 10.1039/C4RA13315C [31] Dias M, Ferreira A, Gouveia R, et al. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress[J]. Marine Environmental Research, 2019, 150: 104758. doi: 10.1016/j.marenvres.2019.104758 [32] Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology[J]. Annual Review of Physiology, 2006, 68: 253−278. doi: 10.1146/annurev.physiol.68.040104.110001 [33] Tang Jia, Ni Xingzhen, Wen Jianqing, et al. Increased ammonium assimilation activity in the scleractinian coral Pocillopora damicornis but not its symbiont after acute heat stress[J]. Frontiers in Marine Science, 2020, 7: 565068. doi: 10.3389/fmars.2020.565068 [34] Su Yilu, Zhou Zhi, Yu Xiaopeng. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral[J]. Molecular Biology Reports, 2018, 45(6): 2115−2124. doi: 10.1007/s11033-018-4369-3 [35] 刘旭, 黄雯, 俞小鹏, 等. 适度热胁迫对造礁石珊瑚热耐受性影响的研究[J]. 海洋湖沼通报, 2022, 44(1): 99−105.Liu Xu, Huang Wen, Yu Xiaopeng, et al. Studies on the effect of moderate heat stress on the heat tolerance of scleractinian coral[J]. Transactions of Oceanology and Limnology, 2022, 44(1): 99−105. [36] Yu Xiaopeng, Huang Bo, Zhou Zhi, et al. Involvement of caspase3 in the acute stress response to high temperature and elevated ammonium in stony coral Pocillopora damicornis[J]. Gene, 2017, 637: 108−114. doi: 10.1016/j.gene.2017.09.040 [37] 李淑, 余克服, 施祺, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6): 534−539.Li Shu, Yu Kefu, Shi Qi, et al. Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island[J]. Tropical Geography, 2008, 28(6): 534−539. [38] Huang Wen, Meng Linqing, Xiao Zunyong, et al. Heat‐tolerant intertidal rock pool coral Porites lutea can potentially adapt to future warming[J]. Molecular Ecology, 2024, 33(5): e17273. doi: 10.1111/mec.17273 [39] Hinrichs S, Patten N L, Waite A M. Temporal variations in metabolic and autotrophic indices for acropora digitifera and acropora spicifera - implications for monitoring projects[J]. PLoS One, 2013, 8(5): e63693. doi: 10.1371/journal.pone.0063693 [40] 张海洋, 赵美霞, 钟瑜, 等. 南海北部造礁石珊瑚共生体光合作用特征季节性监测[J]. 海洋地质前沿, 2021, 37(6): 84−91.Zhang Haiyang, Zhao Meixia, Zhong Yu, et al. Seasonal monitoring of photosynthesis characteristics of scleractinian corals in the Northern South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 84−91. [41] Stimson J. The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 214(1-2): 35−48. doi: 10.1016/S0022-0981(96)02753-0 [42] Brown B E, Dunne R P, Ambarsari I, et al. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species[J]. Marine Ecology Progress Series, 1999, 191: 53−69. doi: 10.3354/meps191053 [43] Bhagooli R, Hidaka M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2004, 137(3): 547−555. [44] Cziesielski M J, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055−10066. doi: 10.1002/ece3.5576 [45] Weis V M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis[J]. Journal of Experimental Biology, 2008, 211(19): 3059−3066. doi: 10.1242/jeb.009597 [46] 邓传奇. 南海环境敏感型造礁珊瑚共生微生物应对温度改变的生态过程[D]. 南宁: 广西大学, 2021.Deng Chuanqi. Ecological process of symbiotic microorganisms in environmentally sensitive reef-building corals in the South China Sea in response to temperature changes[J]. Nanning: Guangxi University, 2021. [47] 许勇前, 陈飚, 覃良云, 等. 涠洲岛霜鹿角珊瑚共生虫黄藻群落的季节变化特征[J]. 广东农业科学, 2023, 50(7): 164−172.Xu Yongqian, Chen Biao, Qin Liangyun, et al. Seasonal variation characteristics of the symbiodiniaceae community associated with Acropora pruinosa from Weizhou Island[J]. Guangdong Agricultural Sciences, 2023, 50(7): 164−172. [48] 韦雪露. 涠洲岛珊瑚共生功能体对季节性温度波动及极端温度胁迫的响应[D]. 南宁: 广西大学, 2024.Wei Xuelu. The response of coral holobionts to seasonal temperature fluctuations and extreme temperature stress in Weizhou Island[D]. Nanning: Guangxi University, 2024. [49] 骆雯雯. 涠洲岛造礁石珊瑚共生体系对异常温度胁迫响应的实验研究[D]. 南宁: 广西大学, 2019.Luo Wenwen. Experimental response of reef-building coral symbiotic system in Weizhou Island to abnormalous temperature stress[D]. Nanning: Guangxi University, 2019. [50] Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001): 742. doi: 10.1038/430742a [51] Al-Hammady M A M M, Silva T F, Hussein H N M, et al. How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview[J]. Algal Research, 2022, 67: 102850. doi: 10.1016/j.algal.2022.102850 -