留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涌浪条件下浪致雷诺应力贡献风应力特征及参数化研究

戴潇铭 邹仲水 李子平

戴潇铭,邹仲水,李子平. 涌浪条件下浪致雷诺应力贡献风应力特征及参数化研究[J]. 海洋学报,2025,47(x):1–13
引用本文: 戴潇铭,邹仲水,李子平. 涌浪条件下浪致雷诺应力贡献风应力特征及参数化研究[J]. 海洋学报,2025,47(x):1–13
Dai Xiaoming,Zou Zhongshui,Li Ziping. The characteristics of the wave coherent stress and its parameterization under swell condition[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Dai Xiaoming,Zou Zhongshui,Li Ziping. The characteristics of the wave coherent stress and its parameterization under swell condition[J]. Haiyang Xuebao,2025, 47(x):1–13

涌浪条件下浪致雷诺应力贡献风应力特征及参数化研究

基金项目: 自然科学基金(42276001)。
详细信息
    作者简介:

    戴潇铭(1999—),男,广东省湛江市人,硕士研究生,从事海浪边界层参数化应用研究。Email:13670962225@163.com

    通讯作者:

    邹仲水,副教授,研究方向为海浪和近海面大气边界层动力耦合过程。Email:zouzhsh3@mail.sysu.edu.cn

The characteristics of the wave coherent stress and its parameterization under swell condition

  • 摘要: 动量通量的准确参数化是海洋和大气灾害预报、气候变化的核心问题。涌浪诱导的浪致雷诺(Wave Coherent,WC)应力是引起参数化不确定性的主要问题之一。基于2012年春季南海北部博贺海洋气象观测平台的大气湍流及海浪观测数据,本文使用协谱法提取WC应力。观测显示风向和涌浪方向垂直时,WC应力贡献接近零;当风向和浪向相近或者反向时,WC应力贡献可占总动量通量的20~25%。为刻画WC应力,本文对比了Janssen(1991,J91方案)和Zou等(2024,Z24方案),发现源自剪切不稳定的J91方案给定的WC应力比观测小1−2个量级;而Z24方案与观测吻合较好;对比还显示J91方案给定的WC应力廓线随着高度单调递减,而Z24方案随着高度先增大后减小。两种WC应力参数化对湍流应力的影响反映在风廓线的差异上,J91方案给定的风廓线与基于传统Monin-Obukhov相似理论(Monin-Obukhov Similarity Theory,MOST)一致,而Z24方案的显示涌浪排放能量时,由于WC应力最大值所在位置高度受大气稳定度影响,导致稳定(不稳定)时靠近(远离)海面的风速比J91方案大。本研究还给定了包含WC应力的参数化方案,并与COARE 3.5进行对比,结果显示本研究的参数化方案在风速区间3−7 m/s的相关系数上高于COARE 3.5,而整体样本偏差比COARE 3.5小。
  • 图  1  观测场示意图

    Fig.  1  The location of the platform

    图  2  距平均海平面8 m高度的大气稳定度(a)、风向与浪向相对夹角(b)与波龄(cp/U8)时序图

    Fig.  2  The time series of atmospheric stability, the angle difference between wind and waves, and wave age observed at 8 m above the sea surface

    图  3  顺风向观测高度的WC应力占总应力贡献比(τwavex/τ)随风向、浪向的夹角差的变化示意图(a),以及贡献比随湍流应力、WC应力的夹角差的变化示意图(b),其中(a,b)协谱法

    Fig.  3  The contribution ratio of the along-wind WC stress (τwavex/τ) to total stress changing with the angle difference between wind and wave (a), and angle difference between turbulent stress and WC stress (b), where (a, b) are derived from the cospectral method

    图  4  侧风向观测高度的WC应力占总应力贡献比(τwavex/τ)随风向、浪向的夹角差的变化示意图(a),以及贡献比随湍流应力、WC应力的夹角差的变化示意图(b),其中(a,b)协谱法

    Fig.  4  The contribution ratio of the across-wind WC stress (τwavey/τ) to total stress changing with the angle difference between wind and wave (a), and angle difference between turbulent stress and WC stress (b), where (a, b) are derived from the cospectral method

    图  5  (a) 利用Z24方案估算浪致拖曳系数与观测比较; (b) 利用J91方案估算浪致拖曳系数与观测比较

    Fig.  5  (a) Comparison of the wave-induced dragcoeffi-cient obtained from observational data with Z24scheme; (b) Comparison of the wave-induced dragcoefficient obtained from observational data with J91scheme

    图  6  顺风向WC应力占总应力贡献比随风向、浪向的夹角差的变化示意图(a),以及贡献比随湍流应力、WC应力的夹角差的变化示意图(b)。(a,b)绿色折线代表Z24方案,由公式(13)给出

    Fig.  6  The contribution of along-wind WC stress to total stress computed from the Z24 scheme changing with the angle difference between wind and wave (a), between turbulent stress and WC stress (b). In (a) and (b), the green dashed lines represent the results obtained by the Z24 scheme, while the blue dashed lines denote the observational results

    图  7  风速为10 m/s、波龄为1.2时的海浪产生的WC应力。图(a)黑线为海浪谱Swave,菱形为海浪成长率$ \gamma $。图(b)为WC应力廓线。剪切不稳定给定的WC应力在临界层(风速和海浪相速度相等的高度)内为常数,之外为零,因此某个频率的WC应力廓线表现为柱状

    Fig.  7  The WC stress over the wave spectra (the solid black line in Figure a), here the wave spectra are computed from Donelan et al. by using U10 = 10 m/s and cp/U10 = 1.2. The diamonds are the wave growth rate. Figure b shows the WC profiles computed from shear instability. The WC stress does not change with height within the critical height and becomes zero above the cirtical height

    图  8  涌浪吸收情形时,WC 应力随高度的分布。(a) 不同风速情形;(b) 不同大气稳定度情形

    Fig.  8  The profile of WC stress exerted by swell when swell absorbs energy from the atmospheric boundary under different wind speeds (a) and stability (b)

    图  9  2012年03月21日07时波龄cp/u* = 74.56的涌浪激发的WC 应力随高度变化。图中$H = z{\omega _p}$Hmax代表WC应力完全衰减至0的高度。紫实线、黑虚线、红实线和蓝色实线分别为公式(9)、(13)、Cao and Shen大涡模拟[31]和Buckley and Veron[29]实验室结果

    Fig.  9  The profile of WC stress at 21 07 03 2012, here $H = z{\omega _p}$and Hmax is the height where WC stress decay to zero. The purple line, dashed line, red line and blue line are the result from Eqs. (9), (13), Cao and Shen and Buckley and Veron

    图  10  (a,c,e,g) 涌浪下WC应力(蓝实线)、湍流应力(红实线)、总应力(黑实线)随高度的变化,橙色虚线为有效波高所在高度,棕色虚线为8m观测面;(b,d,f,h) 涌浪下近海面大气风廓线随高度的变化。(b,d,f,h) 红实线代表Z24方案下风廓线、黑虚线代表传统MOST下大气风廓线、绿实线代表基于Miles剪切不稳定的J91方案下风廓线。(a,b) 2012年02月21日23时(case5);(c,d) 2012年02月21日11时(case3);(e,f) 2012年02月20日09时(case5);(g,h) 2012年04月09日06时30分(case3)

    Fig.  10  The profile of WC, turbulent stress and total stress changing with height (a,c,e,g). The orange dashed line and brown line represent the significant wave height and observed height. The wind profiles influencd by waves. The red line, black line, green line represent the result from Z24, MOST and J91. Figures a and b correspond to case 5 under stable conditions, Figures c and d correspond to case 3 under stable conditions, Figures e and f correspond to case 5 under unstable conditions, and Figures g and h correspond to case 3 under unstable conditions

    图  11  (a) 观测摩擦速度及利用COARE 3.5算法计算的摩擦速度的比较;(b) 观测摩擦速度及利用Z24浪致应力参数化方案推导的摩擦速度。(a,b) 坐标纵横比皆为1∶1

    Fig.  11  Comparison of friction velocity computed from COARE 3.5 (a) and this pare (b) with observation. The solid lines are 1∶1 lines

    表  1  各case的湍流应力、WC应力的方向分布

    Tab.  1  The directional distribution of τturb and τwave for different cases

    τturbx τturby τwavex τwavey
    case 1 > 0 > 0 < 0 < 0
    case 2 > 0 < 0 < 0 < 0
    case 3 > 0 > 0 > 0 > 0
    case 4 > 0 < 0 > 0 > 0
    case 5 > 0 > 0 < 0 > 0
    case 6 > 0 < 0 < 0 > 0
      注:大气极端稳定情形下的case4后续不在本文予以讨论
    下载: 导出CSV
  • [1] 刘凡, 陆小敏, 徐丹, 等. 海浪预报方法研究进展[J]. 河海大学学报(自然科学版), 2021, 49(5): 387−393.

    Liu Fan, Lu Xiaomin, Xu Dan, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University (Natural Sciences), 2021, 49(5): 387−393.
    [2] Shimura T, Hemer M, Lenton A, et al. Impacts of ocean wave-dependent momentum flux on global ocean climate[J]. Geophysical Research Letters, 2020, 47(20): e2020GL089296. doi: 10.1029/2020GL089296
    [3] 王蓉, 张强, 岳平, 等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036

    Wang Rong, Zhang Qiang, Yue Ping, et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science, 2020, 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036
    [4] Monin A S, Yaglom A M. Statistical Fluid Mechanics[M]. Cambridge: MIT Press, 1971.
    [5] Fairall C W, Bradley E F, Hare J E, et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm[J]. Journal of Climate, 2003, 16(4): 571−591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
    [6] Liu Bin, Guan Changlong, Xie Lian. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J22.
    [7] Zhang Lianxin, Zhang Xuefeng, Chu P C, et al. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7783−7802. doi: 10.1002/2016JC012592
    [8] Komori S, Iwano K, Takagaki N, et al. Laboratory measurements of heat transfer and drag coefficients at extremely high wind speeds[J]. Journal of Physical Oceanography, 2018, 48(4): 959−974. doi: 10.1175/JPO-D-17-0243.1
    [9] 李建东, 陈希, 蒋国荣, 等. 海洋边界层内风、浪相互作用研究进展[J]. 海洋预报, 2005, 22(1): 58−66. doi: 10.3969/j.issn.1003-0239.2005.01.009

    Li Jiandong, Chen Xi, Jiang Guorong, et al. The progress of research on the air-sea interaction in WBL[J]. Marine Forecasts, 2005, 22(1): 58−66. doi: 10.3969/j.issn.1003-0239.2005.01.009
    [10] Sahlée E, Drennan W M, Potter H, et al. Waves and air‐sea fluxes from a drifting ASIS buoy during the Southern Ocean Gas Exchange experiment[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08003.
    [11] Chen Sheng, Qiao Fangli, Jiang Wenzheng, et al. Impact of surface waves on wind stress under low to moderate wind conditions[J]. Journal of Physical Oceanography, 2019, 49(8): 2017−2028. doi: 10.1175/JPO-D-18-0266.1
    [12] Voermans J J, Rapizo H, Ma Hongyu, et al. Air–Sea Momentum fluxes during tropical cyclone Olwyn[J]. Journal of Physical Oceanography, 2019, 49(6): 1369−1379. doi: 10.1175/JPO-D-18-0261.1
    [13] Jiang Qingfang. Influence of swell on marine surface-layer structure[J]. Journal of the Atmospheric Sciences, 2020, 77(5): 1865−1885. doi: 10.1175/JAS-D-19-0098.1
    [14] Babanin A V, Makin V K. Effects of wind trend and gustiness on the sea drag: lake George study[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02015.
    [15] Donelan M A, Drennan W M, Katsaros K B. The air-sea momentum flux in conditions of wind sea and swell[J]. Journal of Physical Oceanography, 1997, 27(10): 2087−2099. doi: 10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2
    [16] Rieder K F, Smith J A. Removing wave effects from the wind stress vector[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1363−1374. doi: 10.1029/97JC02571
    [17] Smedman A S, Larsén X G, Högström U, et al. Effect of sea state on the momentum exchange over the sea during neutral conditions[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 31.
    [18] Högström U, Sahlée E, Smedman A, et al. Surface stress over the ocean in swell-dominated conditions during moderate winds[J]. Journal of the Atmospheric Sciences, 2015, 72(12): 4777−4795. doi: 10.1175/JAS-D-15-0139.1
    [19] Zou Zhongshui, Li Shuiqing, Huang Jian, et al. Atmospheric boundary layer turbulence in the presence of swell: turbulent kinetic energy budget, Monin–Obukhov similarity theory, and inertial dissipation method[J]. Journal of Physical Oceanography, 2020, 50(5): 1213−1225. doi: 10.1175/JPO-D-19-0136.1
    [20] Liu Changlong, Li Xinyu, Song Jinbao, et al. Characteristics of the marine atmospheric boundary layer under the influence of ocean surface waves[J]. Journal of Physical Oceanography, 2022, 52(6): 1261−1276. doi: 10.1175/JPO-D-21-0164.1
    [21] Chalikov D. The Parameterization of the wave boundary layer[J]. Journal of Physical Oceanography, 1995, 25(6): 1333−1349. doi: 10.1175/1520-0485(1995)025<1333:TPOTWB>2.0.CO;2
    [22] Babanin A V, Mcconochie J, Chalikov D. Winds near the surface of waves: observations and modeling[J]. Journal of Physical Oceanography, 2018, 48(5): 1079−1088. doi: 10.1175/JPO-D-17-0009.1
    [23] Makin V K, Kudryavtsev V N, Mastenbroek C. Drag of the sea surface[J]. Boundary-Layer Meteorology, 1995, 73(1): 159−182.
    [24] García-Nava H, Ocampo-Torres F J, Hwang P A, et al. Reduction of wind stress due to swell at high wind conditions[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J11.
    [25] Kudryavtsev V, Chapron B, Makin V. Impact of wind waves on the air-sea fluxes: a coupled model[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 1217−1236. doi: 10.1002/2013JC009412
    [26] Zou Zhongshui, Zhao Dongliang, Zhang Juna, et al. The influence of swell on the atmospheric boundary layer under Nonneutral conditions[J]. Journal of Physical Oceanography, 2018, 48(4): 925−936. doi: 10.1175/JPO-D-17-0195.1
    [27] Hanley K E, Belcher S E. Wave-Driven wind jets in the marine atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2008, 65(8): 2646−2660. doi: 10.1175/2007JAS2562.1
    [28] Semedo A, Saetra Ø, Rutgersson A, et al. Wave-Induced wind in the marine boundary layer[J]. Journal of the Atmospheric Sciences, 2009, 66(8): 2256−2271. doi: 10.1175/2009JAS3018.1
    [29] Wu Lichuan, Hristov T, Rutgersson A. Vertical profiles of Wave-Coherent momentum flux and velocity variances in the marine atmospheric boundary layer[J]. Journal of Physical Oceanography, 2018, 48(3): 625−641. doi: 10.1175/JPO-D-17-0052.1
    [30] Wu Lichuan, Qiao Fangli. Wind profile in the wave boundary layer and its application in a coupled Atmosphere-Wave model[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC018123. doi: 10.1029/2021JC018123
    [31] Miles J W. On the generation of surface waves by shear flows[J]. Journal of Fluid Mechanics, 1957, 3(2): 185−204. doi: 10.1017/S0022112057000567
    [32] Buckley M P, Veron F. Structure of the airflow above surface waves[J]. Journal of Physical Oceanography, 2016, 46(5): 1377−1397. doi: 10.1175/JPO-D-15-0135.1
    [33] Cao Tao, Deng Bingqing, Shen Lian. A simulation-based mechanistic study of turbulent wind blowing over opposing water waves[J]. Journal of Fluid Mechanics, 2020, 901: A27. doi: 10.1017/jfm.2020.591
    [34] Cao Tao, Shen Lian. A numerical and theoretical study of wind over fast-propagating water waves[J]. Journal of Fluid Mechanics, 2021, 919: A38. doi: 10.1017/jfm.2021.416
    [35] Townsend A A. Flow in a deep turbulent boundary layer over a surface distorted by water waves[J]. Journal of Fluid Mechanics, 1972, 55(4): 719−735. doi: 10.1017/S0022112072002101
    [36] Janssen P A E M. Quasi-linear theory of wind-wave generation applied to wave forecasting[J]. Journal of Physical Oceanography, 1991, 21(11): 1631−1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
    [37] Zou Zhongshui, Song Jinbao, Qiao Fangli, et al. The Wave-Coherent stress and turbulent structure over swell waves[J]. Journal of Physical Oceanography, 2024, 54(9): 1933−1948. doi: 10.1175/JPO-D-23-0144.1
    [38] Hristov T, Ruiz-Plancarte J. Dynamic Balances in a wavy boundary layer[J]. Journal of Physical Oceanography, 2014, 44(12): 3185−3194. doi: 10.1175/JPO-D-13-0209.1
    [39] Huang Jian, Zou Zhongshui, Zeng Qingcun, et al. The turbulent structure of the marine atmospheric boundary layer during and before a cold front[J]. Journal of the Atmospheric Sciences, 2021, 78(3): 863−875. doi: 10.1175/JAS-D-19-0314.1
    [40] Zou Zhongshui, Zhao Dongliang, Liu Bin, et al. Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4123−4142. doi: 10.1002/2016JC012399
    [41] Zou Zhongshui, Song Jinbao, Li Peiliang, et al. Effects of swell waves on atmospheric boundary layer turbulence: a low wind field study[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5671−5685. doi: 10.1029/2019JC015153
    [42] Harris D L. The wave-driven wind[J]. Journal of the Atmospheric Sciences, 1966, 23(6): 688−693. doi: 10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2
    [43] Holthuijsen L H, Powell M D, Pietrzak J D. Wind and waves in extreme hurricanes[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09003.
    [44] Jeffreys H S. On the formation of water waves by wind[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 1925, 107(742): 189−206.
    [45] Lighthill M J. Physical interpretation of the mathematical theory of wave generation by wind[J]. Journal of Fluid Mechanics, 1962, 14(3): 385−398. doi: 10.1017/S0022112062001305
    [46] Janssen P. The Interaction of Ocean Waves and Wind[M]. Cambridge: Cambridge University Press, 2004.
    [47] Donelan M A, Hamilton J, Hui W H, et al. Directional spectra of wind-generated ocean waves[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1534): 509−562. doi: 10.1098/rsta.1985.0054
    [48] Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173−217. doi: 10.1017/S0022112082001311
    [49] Perry A E, Henbest S, Chong M S. A theoretical and experimental study of wall turbulence[J]. Journal of Fluid Mechanics, 1986, 165: 163−199. doi: 10.1017/S002211208600304X
    [50] Perry A E, Marušić I. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361−388. doi: 10.1017/S0022112095003351
    [51] Li D, Katul G G, Gentine P. The k-1 scaling of air temperature spectra in atmospheric surface layer flows[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(694): 496−505. doi: 10.1002/qj.2668
    [52] Edson J B, Jampana V, Weller R A, et al. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 2013, 43(8): 1589−1610. doi: 10.1175/JPO-D-12-0173.1
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-24
  • 修回日期:  2025-05-09
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回