留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堤前红树林对直立堤波压力影响的数值模拟研究

雷佳欣 张荣 陈永平 王远 姚鹏

雷佳欣,张荣,陈永平,等. 堤前红树林对直立堤波压力影响的数值模拟研究[J]. 海洋学报,2024,46(x):1–14
引用本文: 雷佳欣,张荣,陈永平,等. 堤前红树林对直立堤波压力影响的数值模拟研究[J]. 海洋学报,2024,46(x):1–14
Lei Jiaxin,Zhang Rong,Chen Yongping, et al. Numerical simulation on the impact of mangroves on wave pressure on vertical sea dikes[J]. Haiyang Xuebao,2024, 46(x):1–14
Citation: Lei Jiaxin,Zhang Rong,Chen Yongping, et al. Numerical simulation on the impact of mangroves on wave pressure on vertical sea dikes[J]. Haiyang Xuebao,2024, 46(x):1–14

堤前红树林对直立堤波压力影响的数值模拟研究

基金项目: 国家重点研发计划项目(2023YFC3008100)。
详细信息
    作者简介:

    雷佳欣,硕士生,主要从事生态海堤模型实验及数值模拟研究。E-mail:leijiaxin2023@163.com

    通讯作者:

    陈永平,博士,教授,主要从事海岸灾害与防灾减灾研究。E-mail:ypchen@hhu.edu.cn

  • 中图分类号: P731.22

Numerical simulation on the impact of mangroves on wave pressure on vertical sea dikes

  • 摘要: 基于非静压模型SWASH,建立数值波浪水槽,通过设置有无红树林的对比实验,系统研究了波浪-红树林-直立堤相互作用时的水动力特性,并分析了波陡、相对水深、厄塞尔数、红树林长度、密度、特征直径等因素对直立堤堤前波高、迎浪面最大波压力的影响。研究结果表明:无红树林时Goda公式无法准确估算直立堤上的冲击荷载;在模型比尺为1∶10的数值实验中,2 m宽的堤前红树林可使波高衰减6%~45%,波压力衰减11%~74%,然而,在相对波高较大且红树林特征参数较小时会引起堤前波高增大4%~26%;在本文考虑的水力条件下,最大波压力随波陡减小而减小58%~93%,随相对水深增大而减小42%~72%,随厄塞尔数减小而减小87%~96%;堤前波高和波压力衰减率随红树林宽度、密度及特征直径的增加而非线性增加。研究结果可为进一步认识红树林的消浪效应及红树林生态系统与海堤组合的海岸防护工程的设计与规划提供科学的依据。
  • 图  1  红树林消浪实验布置(单位:m)

    Fig.  1  Layout of mangrove wave attenuation experiment (unit: m)

    图  2  红树林区域的波浪传播变形验证

    Fig.  2  Verification of wave propagation deformation in mangrove areas

    图  3  波浪与直立堤作用实验布置(单位:m)

    Fig.  3  Layout of of wave interaction with vertical dike experiment (unit: m)

    图  4  规则波与直立堤相互作用验证

    Fig.  4  Verification of regular wave interaction with vertical dike

    图  5  SWASH数值水槽计算区域布置

    Fig.  5  Layout of the computational area in the swash numerical flume

    图  6  波压强历时曲线特征

    Fig.  6  Characteristics of the wave pressure duration curve

    图  7  理论值、实验值与数模计算值相对波压强分布对比

    Fig.  7  Comparison of theoretical, experimental, and numerical simulation values for relative wave pressure distribution

    图  8  堤前水位历时及直立堤壁面静水位处的压强历时(破碎波工况下)

    Fig.  8  Duration of water level in front of the dike and pressure duration at the still water level on the vertical dike wall (under breaking wave conditions)

    图  9  有无红树林时堤前波高$ H $及最大波压力$ {F}_{max} $对比

    Fig.  9  Comparison of wave height $ H $ and maximum wave pressure $ {F}_{max} $ in front of the dike with and without mangroves

    图  10  红树林堤前波高衰减率$ \mathrm{\Delta }H $和波压力衰减率$ \mathrm{\Delta }F $

    Fig.  10  Attenuation rates of wave height $ \mathrm{\Delta }H $ and wave pressure $ \mathrm{\Delta }F $ in Mangroves

    图  11  波浪参数对标准最大波压力$ {F}_{max}/\rho g{h}^{2} $的影响

    Fig.  11  The influence of wave parameters on the standardized maximum wave pressure $ {F}_{max}/\rho g{h}^{2} $

    图  12  红树林宽度、密度对堤前波高衰减率$ \mathrm{\Delta }H $及最大波压力衰减率$ \mathrm{\Delta }F $的影响

    Fig.  12  The effect of mangrove width and density on the attenuation rate of wave height $ \mathrm{\Delta }H $ and maximum wave pressure $ \mathrm{\Delta }F $in front of the dike

    图  13  红树林特征直径对堤前波高衰减率$ \mathrm{\Delta }H $及最大波压力衰减率$ \mathrm{\Delta }F $的影响

    Fig.  13  The effect of mangrove characteristic diameter on the attenuation rate of wave height $ \mathrm{\Delta }H $ and maximum wave pressure $ \mathrm{\Delta }F $ in front of the dike

    表  1  红树林区域的波浪传播变形验证工况

    Tab.  1  Verification conditions for wave propagation in Mangroves

    工况水深h/m波高H/m周期T/s$ {C}_{D}( $V1)$ {C}_{D}( $V2)
    A10.30.061.23.67.6
    A20.30.061.436.1
    A30.40.081.42.75.4
    A40.40.081.62.34.5
    A50.50.121.42.14.2
    A60.50.121.61.83.5
    下载: 导出CSV

    表  2  实验工况的参数设置

    Tab.  2  Parameter settings of experimental conditions

    序号 模型 水深h/m 波高H/m 周期T/s 植物宽度B/m 植物密度Nv/(株·m−2) 植物特征直径Dv/m
    M1 无红树林 0.3 0.04、0.06、0.08 1、1.4、1.8
    0.4 0.06、0.10、0.14 1、1.4、1.8
    0.5 0.04、0.06、0.08、0.14、0.2 1、1.4、2.0
    M2 有红树林 0.3 0.04、0.06、0.08 1、1.4、1.8 2 36 0.06
    0.4 0.06、0.10、0.14 1、1.4、1.8 2 36 0.06
    0.5 0.04、0.06、0.08、0.14、0.2 1、1.4、2.0 2 36 0.06
    M3 有红树林 0.3、0.4、0.5 0.08 1.4 2、4、6、8、10 36 0.06
    M4 有红树林 0.3、0.4、0.5 0.08 1.4 2 36、72、108、144 0.06
    M5 有红树林 0.3、0.4、0.5 0.08 1.4 2 36 0.03、0.06、0.09、0.12
      注:−表示无红树林的工况。
    下载: 导出CSV
  • [1] Bullock G N, Obhrai C, Peregrine D H, et al. Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls[J]. Coastal Engineering, 2007, 54(8): 602−617. doi: 10.1016/j.coastaleng.2006.12.002
    [2] Romolo A, Timpano B, Laface V, et al. Experimental investigation of wave loads on U-OWC breakwater[J]. Journal of Marine Science and Engineering, 2023, 11(1): 19.
    [3] 叶舟. 基于浙江海堤安全的海洋环境因子变化研究[J]. 海洋工程, 2021, 39(3): 127−134.

    Ye Zhou. Study on the impact of regional marine environmental factors on the seawall safety in Zhejiang[J]. The Ocean Engineering, 2021, 39(3): 127−134.
    [4] 陈君. 江苏海堤生态化建设思考与建议[J]. 中国水利, 2023(6): 33−36.

    Chen Jun. Thoughts and suggestion on ecological construction of seawalls in Jiangsu Province[J]. China Water Resources, 2023(6): 33−36.
    [5] Möller I, Kudella M, Rupprecht F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727−731. doi: 10.1038/ngeo2251
    [6] Yang Zhiyong, Tang Jun, Shen Yongming. Numerical study for vegetation effects on coastal wave propagation by using nonlinear Boussinesq model[J]. Applied Ocean Research, 2018, 70: 32−40. doi: 10.1016/j.apor.2017.09.001
    [7] Horstman E M, Dohmen-Janssen C M, Narra P M F, et al. Wave attenuation in mangroves: a quantitative approach to field observations[J]. Coastal Engineering, 2014, 94: 47−62. doi: 10.1016/j.coastaleng.2014.08.005
    [8] 田野, 陈玉军, 侯琳, 等. 广东湛江无瓣海桑红树林消波效应初步研究[J]. 浙江农业科学, 2014(2): 210−213.

    Tian Ye, Chen Yujun, Hou Lin, et al. A preliminary study on the wave dissipation effect of mangrove forests in Zhanjiang, Guangdong Province[J]. Journal of Zhejiang Agricultural Sciences, 2014(2): 210−213. (查阅网上资料, 未找到本条文献的英文信息, 请确认)
    [9] Cao Haijin, Chen Yujun, Tian Ye, et al. Field investigation into wave attenuation in the mangrove environment of the South China Sea Coast[J]. Journal of Coastal Research, 2016, 32(6): 1417−1427.
    [10] Hu Zhan, Suzuki T, Zitman T, et al. Laboratory study on wave dissipation by vegetation in combined current–wave flow[J]. Coastal Engineering, 2014, 88: 131−142. doi: 10.1016/j.coastaleng.2014.02.009
    [11] Maza M, Adler K, Ramos D, et al. Velocity and drag evolution from the leading edge of a model mangrove forest[J]. Journal of Geophysical Research:Oceans, 2017, 122(11): 9144−9159. doi: 10.1002/2017JC012945
    [12] 陈杰, 赵静, 蒋昌波, 等. 非淹没刚性植物对规则波传播变形影响实验研究[J]. 海洋通报, 2017, 36(2): 222−229.

    Chen Jie, Zhao Jing, Jiang Changbo, et al. Laboratory investigation on the effects of emergent rigid vegetation on the regular wave transformation[J]. Marine Science Bulletin, 2017, 36(2): 222−229.
    [13] 何飞, 陈杰, 蒋昌波, 等. 规则波作用下植物带波高衰减特性实验研究[J]. 海洋科学进展, 2018, 36(1): 146−158.

    He Fei, Chen Jie, Jiang Changbo, et al. Experimental study on wave height attenuation induced by the coastal vegetation under regular waves[J]. Advances in Marine Science, 2018, 36(1): 146−158.
    [14] Maza M, Lara J L, Losada I J. Tsunami wave interaction with mangrove forests: a 3-D numerical approach[J]. Coastal Engineering, 2015, 98: 33−54. doi: 10.1016/j.coastaleng.2015.01.002
    [15] Tang Jun, Shen Yongming, Causon D M, et al. Numerical study of periodic long wave run-up on a rigid vegetation sloping beach[J]. Coastal Engineering, 2017, 121: 158−166. doi: 10.1016/j.coastaleng.2016.12.004
    [16] Yao Yu, Tang Zhengjiang, Jiang Changbo, et al. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach[J]. Journal of Hydro-Environment Research, 2018, 19: 78−87. doi: 10.1016/j.jher.2018.03.001
    [17] Zou Xuefeng, Zhu Liangsheng, Zhao Jun. Numerical simulations of non-breaking, breaking and broken wave interaction with emerged vegetation using navier-stokes equations[J]. Water, 2019, 11(12): 2561. doi: 10.3390/w11122561
    [18] Tanaka N, Sasaki Y, Mowjood M I M, et al. Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami[J]. Landscape and Ecological Engineering, 2007, 3(1): 33−45. doi: 10.1007/s11355-006-0013-9
    [19] Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024
    [20] Schoonees T, Gijón Mancheño A, Scheres B, et al. Hard structures for coastal protection, towards greener designs[J]. Estuaries and Coasts, 2019, 42(7): 1709−1729. doi: 10.1007/s12237-019-00551-z
    [21] Tomiczek T, Wargula A, Lomónaco P, et al. Physical model investigation of mid-scale mangrove effects on flow hydrodynamics and pressures and loads in the built environment[J]. Coastal Engineering, 2020, 162: 103791. doi: 10.1016/j.coastaleng.2020.103791
    [22] Sainflou G. Essai sur les digues meritimes verticales[J]. Annales Pnots et Chaussees, 1928, 98(4): 5−48.
    [23] Minikin R C. Winds, Waves and Maritime Structures: Studies in Harbour Making and the Protection of Coasts[M]. 2nd ed. London: Griffin, 1963.
    [24] Goda Y. A new method of wave pressure calculation for the design of composite breakwaters[J]. Report of the Port and Harbour Research Institute, 1973, 12(3): 31−69. (查阅网上资料, 未找到本条文献, 请确认)

    Goda Y. A new method of wave pressure calculation for the design of composite breakwaters[J]. Report of the Port and Harbour Research Institute, 1973, 12(3): 31−69. (查阅网上资料, 未找到本条文献, 请确认)
    [25] Hsu H C, Chen Y Y, Chen Y R, et al. Experimental study of forces influencing vertical breakwater under extreme waves[J]. Water, 2022, 14(4): 657. doi: 10.3390/w14040657
    [26] Kumaran V, Manu, Rao S. Assessment of dynamic pressure and wave forces on vertical-caisson type breakwater[J]. Marine Georesources & Geotechnology, 2022, 40(2): 147−158.
    [27] 王浩霖, 张华昌, 董胜. 直立堤上任意方向入射波的波压力研究[J]. 工程力学, 2018, 35(5): 246−256.

    Wang Haolin, Zhang Huachang, Dong Sheng. A study on arbitrary incident wave pressure on vertical breakwaters[J]. Engineering Mechanics, 2018, 35(5): 246−256.
    [28] Neelamani S, Al-Anjari N. Experimental investigations on wave induced dynamic pressures over slotted vertical barriers in random wave fields[J]. Ocean Engineering, 2021, 220: 108482. doi: 10.1016/j.oceaneng.2020.108482
    [29] Gruwez V, Altomare C, Suzuki T, et al. An inter-model comparison for wave interactions with sea dikes on shallow foreshores[J]. Journal of Marine Science and Engineering, 2020, 8(12): 985. doi: 10.3390/jmse8120985
    [30] Rosenberger D, Marsooli R. Benefits of vegetation for mitigating wave impacts on vertical seawalls[J]. Ocean Engineering, 2022, 250: 110974. doi: 10.1016/j.oceaneng.2022.110974
    [31] Mokrani C, Abadie S, Grilli S, et al. Numerical simulation of the impact of a plunging breaker on a vertical structure and subsequent overtopping event using a Navier-stokes VOF model[C]//Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing: ISOPE, 2010.
    [32] Martin-Medina M, Abadie S, Mokrani C, et al. Numerical simulation of flip-through impacts of variable steepness on a vertical breakwater[J]. Applied Ocean Research, 2018, 75: 117−131. doi: 10.1016/j.apor.2018.03.013
    [33] Zijlema M, Stelling G, Smit P. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters[J]. Coastal Engineering, 2011, 58(10): 992−1012. doi: 10.1016/j.coastaleng.2011.05.015
    [34] Morison J R, Johnson J W, Schaaf S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149−154. doi: 10.2118/950149-G
    [35] Zhang Rong, Chen Yongping, Lei Jiaxin, et al. Experimental investigation of wave attenuation by mangrove forests with submerged canopies[J]. Coastal Engineering, 2023, 186: 104403. doi: 10.1016/j.coastaleng.2023.104403
    [36] Zhang Xiaoxia, Lin Pengzhi, Nepf H. A simple‐wave damping model for flexible marsh plants[J]. Limnology and Oceanography, 2021, 66(12): 4182−4196. doi: 10.1002/lno.11952
    [37] Brinkman R M. Wave attenuation in mangrove forests: an investigation through field and theoretical studies[D]. Townsville: James Cook University, 2006.
    [38] Maza M, Lara J L, Losada I J. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest[J]. Advances in Water Resources, 2019, 131: 103376. doi: 10.1016/j.advwatres.2019.07.006
    [39] Maza M, Lara J L, Losada I J. Predicting the evolution of coastal protection service with mangrove forest age[J]. Coastal Engineering, 2021, 168: 103922. doi: 10.1016/j.coastaleng.2021.103922
    [40] Keimer K, Schürenkamp D, Miescke F, et al. Ecohydraulics of surrogate salt marshes for coastal protection: wave–vegetation interaction and related hydrodynamics on vegetated foreshores at sea dikes[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2021, 147(6): 04021035. doi: 10.1061/(ASCE)WW.1943-5460.0000667
    [41] Phan L K, van Thiel de Vries J S M, Stive M J F. Coastal mangrove squeeze in the Mekong Delta[J]. Journal of Coastal Research, 2015, 31(2): 233−243.
    [42] Ismail H, Abd Wahab A K, Alias N E. Determination of mangrove forest performance in reducing tsunami run-up using physical models[J]. Natural Hazards, 2012, 63(2): 939−963. doi: 10.1007/s11069-012-0200-y
    [43] Lee W K, Tay S H X, Ooi S K, et al. Potential short wave attenuation function of disturbed mangroves[J]. Estuarine, Coastal and Shelf Science, 2021, 248: 106747. doi: 10.1016/j.ecss.2020.106747
    [44] 龚尚鹏, 陈杰, 蒋昌波, 等. 海岸植物带对孤立波的波能耗散研究[J]. 海洋科学进展, 2020, 38(3): 522−531.

    Gong Shangpeng, Chen Jie, Jiang Changbo, et al. Solitary wave energy dissipation by coastal vegetation[J]. Advances in Marine Science, 2020, 38(3): 522−531.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  21
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回