留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国南海北部海域239+240Pu的来源与变化趋势研究

黄亚楠 刘志勇 管永精

黄亚楠,刘志勇,管永精. 中国南海北部海域239+240Pu的来源与变化趋势研究[J]. 海洋学报,2024,47(x):1–13
引用本文: 黄亚楠,刘志勇,管永精. 中国南海北部海域239+240Pu的来源与变化趋势研究[J]. 海洋学报,2024,47(x):1–13
HUANG Yanan,LIU Zhiyong,GUAN Yongjing. Research on the sources and trends of 239+240Pu in the Northern South China Sea[J]. Haiyang Xuebao,2024, 47(x):1–13
Citation: HUANG Yanan,LIU Zhiyong,GUAN Yongjing. Research on the sources and trends of 239+240Pu in the Northern South China Sea[J]. Haiyang Xuebao,2024, 47(x):1–13

中国南海北部海域239+240Pu的来源与变化趋势研究

基金项目: 南宁师范大学博士科研启动项目(602021239517)。
详细信息
    作者简介:

    黄亚楠(),男,籍贯,研究方向,邮箱:highttee@163.com

Research on the sources and trends of 239+240Pu in the Northern South China Sea

  • 摘要: 本文对中国南海北部海域海水、珊瑚、贝壳和沉积物中239+240Pu浓度或比活度、240Pu/239Pu原子比值和239+240Pu累积通量等283个站位数据进行整理,归纳总结了该海域239+240Pu在表层海水、水柱、表层沉积物以及柱样沉积物中的来源与变化趋势。根据端元模型研究结果表明,目前全球大气沉降(GF)和太平洋核试验场(PPG)是中国南海北部海域所调查环境样品中239+240Pu的主要来源。同时,根据迁移模型发现水柱中239+240Pu浓度峰值所对应的海水深度与其迁移速率呈现正相关的线性关系。表层沉积物有机质含量或粒度与239+240Pu比活度相关性具有分段性质,分别呈现正相关性和负相关性。沉积物柱样中239+240Pu的沉积速率在数值上通常要大于等于可交换态239+240Pu的表观对流速率,并且柱样中239+240Pu的沉积速率与最大表观对流速率呈现显著正相关的线性关系;柱样中可交换态239+240Pu的最大表观对流速率对沉积速率的影响可以忽略。
  • 图  1  南海北部海域239+240Pu采样站位分布

    Fig.  1  Spatial distribution of 239+240Pu sampling stations in the northern South China Sea

    图  2  中国南海北部海域表层海水中239+240Pu浓度的变化

    Fig.  2  The variation of 239+240Pu concentration in surface seawater of the Northern South China Sea over time

    图  3  海水柱样中239+240Pu浓度的垂向分布

    Fig.  3  Vertical distribution of 239+240Pu concentration in seawater column samples

    图  4  海水柱样中不同来源239+240Pu扩散速率的比较

    Fig.  4  Comparison of diffusion rates of 239+240Pu from different sources in seawater column samples

    图  5  中国南海北部海域表层沉积物中239+240Pu与240Pu/239Pu

    Fig.  5  239+240Pu and 240Pu/239Pu in surface sediments of the northern South China Sea

    图  6  中国南部北部海域表层沉积物中粒度分布图

    Fig.  6  Particle size distribution in surface sediments of the northern South China Sea

    图  7  中国南部北部海域柱样沉积物中239+240Pu的垂向分布

    Fig.  7  Vertical distribution of 239+240Pu in sediment cores from the northern South China Sea

    图  8  柱样沉积物中239+240Pu的沉积速率与最大表观对流速率比较

    Fig.  8  Comparison of sedimentation rate and apparent diffusion rate of 239+240Pu in sediment cores

    表  2  海水柱样中239+240Pu的扩散速率

    Tab.  2  Diffusion rate of 239+240Pu in seawater column samples

    序号 海域 柱样名称 v1-PPG m/a R2 v1-GF m/a R2 239+240Pu峰值深度/m 参考文献
    1 赤道海域 AQ-7 9±0 0.99 8±1 0.90 600 文献[26,37]
    2 南太平洋 AQ-13 14±2 0.92 8±1 0.66 300 文献[26,37]
    3 西北太平洋 DR-10 8±1 0.78 7±1 0.78 598 文献[26,38]
    4 白令海 DR-13 8±1 0.66 9±1 0.75 405 文献[26,38]
    5 南澳大利亚海盆 PA-4 15±1 0.80 13±1 0.90 1000 文献[26,39]
    6 珀斯海盆 PA-5 15±1 0.81 13±1 0.89 1000 文献[26,39]
    7 西澳大利亚海盆 PA-7 8±1 0.65 6±1 0.63 200 文献[26,39]
    8 安达曼海 PA-9 5±1 0.63 5±0 0.80 400 文献[26,39]
    9 孟加拉湾 PA-10 5±1 0.49 5±1 0.58 200 文献[26,39]
    10 南海北部海域 SEATSII 12±1 0.92 9.84 0.91 500 文献[17,26]
    下载: 导出CSV

    表  3  南海北部表层沉积物中239+240Pu(x)与240Pu/239Pu(y)相关关系

    Tab.  3  The correlation between 239+240Pu (x) and 240Pu/239Pu (y) in surface sediments of the northern South China Sea

    序号 拟合方程 n R 样品类型 相关性 参考文献
    1 y= −0.0021 × (1/x) + 0.269 25 −0.854 沉积物 负相关 文献[21]
    2 y= −0.0022 × (1/x) + 0.271 44 −0.705 沉积物 负相关 文献[23]
    3 y= −0.00124 × (1/x) + 0.249 36 −0.536 沉积物 负相关 文献[25]
    4 Y=0.0184×log10(x)+0.275 91 0.599 沉积物 正相关 文献[41]
    5 Y=0.0347×log10(x)+0.238 175 0.439 沉积物 正相关 本研究
    6 Y=0.0402×log10(x)+0.233 187 0.486 沉积物+珊瑚 正相关 本研究
    下载: 导出CSV

    表  4  粒度或有机质与239+240Pu比活度的相关性分析

    Tab.  4  The correlation between particle size or organic matter and 239+240Pu

    序号项目区间拟合方程nR相关性
    1粒度-239+240Pu0~20 μmy=-0.013x+0.38847-0.281负相关
    2粒度-239+240Pu20~30 μmy=-0.038x+1.3039-0.904负相关
    3粒度-239+240Pu40~180 μmy=-0.0005x+0.1858-0.445负相关
    4有机质-239+240Pu0~1%y=0.173x+0.107210.400正相关
    5有机质-239+240Pu1~10%y=0.050x-0.029450.644正相关
    6有机质-239+240Pu10~20%y=0.014x-0.10030.954正相关
    下载: 导出CSV

    表  1  中国南海北部海域239+240Pu样品的数据信息

    Tab.  1  Information of 239+240Pu samples in the northern South China Sea

    序号 239+240Pu样品类型 采样时间 个数 测试方法 标样验证 参考文献
    1 表层海水 1984-1997 9 α谱仪 n.a. MARIS
    2 表层海水 2007前 1 SF-ICP-MS NBS-947 [14]
    3 表层海水 2014-2015 36 α谱仪 n.a. 文献[15]
    4 表层海水 2014-2015 1 MC-ICP-MS IEAE-443 文献[16]
    5 海水(表层+柱样) 2012-2013 19 MC-ICP-MS IEAE-443 文献[17]
    6 珊瑚 2018 1 ICP-MS和AMS n.a. 文献[18]
    7 珊瑚 2018 11 ICP-MS和AMS n.a. 文献[19]
    8 柱样沉积物 1996-1997 1 SF-ICP-MS n.a. 文献[20]
    9 沉积物(表层+柱样) 2009-2012 28 SF-ICP-MS IAEA-368 文献[21]
    10 沉积物(表层+柱样) 2012 3 SF-ICP-MS NIST- 4334I 文献[10]
    11 表层沉积物 2013 44 SF-ICP-MS NBS-947 文献[22]
    12 表层沉积物 n.a. 3 SF-ICP-MS NBS-947 文献[23]
    13 表层沉积物 2018 13 ICP-MS/MS NIST-4334 文献[24]
    14 表层沉积物 2021 17 ICP-MS/MS NIST-4357 文献[11]
    15 表层沉积物 2022 36 SF-ICP-MS n.a. 文献[25]
    16 表层沉积物 2006-2010 25 SF-ICP-MS NIST-4357 文献[26]
    17 柱样沉积物 2009-2023 7 SF-ICP-MS NIST-4357 文献[27]
    18 贝壳 2021 5 AMS UKAEA 文献[28]
    19 表层海水 2019 23 ICP-MS/MS n.a. 文献[29]
      注: n.a.表示从原文中无法获得信息.
    MARIS (Marine Radioactivity Information System): https://maris.iaea.org/
    下载: 导出CSV
  • [1] Zheng Jian, Tagami K, Watanabe Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J]. Scientific Reports, 2012, 2(1): 304. doi: 10.1038/srep00304
    [2] 杨国胜, 胡珺, 郑建. 福岛核事故对日本环境和食品安全的影响[J]. 国际放射医学核医学杂志, 2019, 43(2): 99−105. doi: 10.3760/cma.j.issn.1673-4114.2019.02.001

    Yang Guosheng, Hu Jun, Zheng Jian. Environmental impact and food safety in Japan after the Fukushima Daiichi Nuclear Power Plant accident[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2019, 43(2): 99−105. doi: 10.3760/cma.j.issn.1673-4114.2019.02.001
    [3] Zheng Jian, Tagami K, Uchida S. Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known[J]. Environmental Science & Technology, 2013, 47(17): 9584−9595.
    [4] Steinhauser G, Brandl A, Johnson T E. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts[J]. Science of the Total Environment, 2014, 470−471: 800−817. doi: 10.1016/j.scitotenv.2013.10.029
    [5] Nan Feng, Xue Huijie, Yu Fei. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137: 314−333. doi: 10.1016/j.pocean.2014.05.012
    [6] UNSCEAR. Sources and effects of ionizing radiation[R]. New York: United Nations, 2000.
    [7] Aarkrog A. Input of anthropogenic radionuclides into the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17/21): 2597−2606.
    [8] Hamilton T F. Linking legacies of the cold war to arrival of anthropogenic radionuclides in the oceans through the 20th century[R]. Livermore: Lawrence Livermore National Laboratory, 2005: 23−78.
    [9] 李思璇, 黄雯娜, 许宏, 等. 西北太平洋表层海水中239+240Pu浓度及240Pu/239Pu同位素比[J]. 原子能科学技术, 2021, 55(4): 751−760. doi: 10.7538/yzk.2020.youxian.0082

    Li Sixuan, Huang Wenna, Xu Hong, et al. 239+240Pu concentration and 240Pu/239Pu isotopic ratio in surface seawater of Northwest Pacific[J]. Atomic Energy Science and Technology, 2021, 55(4): 751−760. doi: 10.7538/yzk.2020.youxian.0082
    [10] Guan Yongjing, Sun Shuyue, Sun Shaohan, et al. Distribution and sources of plutonium along the coast of Guangxi, China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 437: 61−65.
    [11] Chen Jisheng, Wang Cui, Wu Junwen, et al. Plutonium in sediments of the Eastern Guangdong coast-its sources and their contribution[J]. Marine Pollution Bulletin, 2023, 193: 115222. doi: 10.1016/j.marpolbul.2023.115222
    [12] 黄亚楠. 中国沿海省份环境中239+240Pu的来源与含量水平[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(2): 113−122.

    Huang Yanan. The source and level of 239+240Pu in the environment of coastal provinces in China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(2): 113−122.
    [13] Tighe C, Castrillejo M, Christl M, et al. Local and global trace plutonium contributions in fast breeder legacy soils[J]. Nature Communications, 2021, 12(1): 1381. doi: 10.1038/s41467-021-21575-9
    [14] 王中良, 山田正俊, 郑建. 钚同位素法示踪中国领海核爆散落物钚的主要来源与迁移途径[J]. 地球与环境, 2007, 35(4): 289−296. doi: 10.3969/j.issn.1672-9250.2007.04.001

    Wang Zhongliang, Yamada M, Zheng Jian. Sources and transport route of plutonium in the China’s Seas[J]. Earth and Environment, 2007, 35(4): 289−296. doi: 10.3969/j.issn.1672-9250.2007.04.001
    [15] 谢骏箭. 我国南海近岸核电站附近海域环境中Pu的测定及含量水平研究[D]. 衡阳: 南华大学, 2016.

    Xie Junjian. The study of measurement and concentration of the Pu in the marine environment near the nuclear power plant of south China Sea[D]. Hengyang: University of South China, 2016.
    [16] Wu Junwen. Sources and scavenging of plutonium in the East China Sea[J]. Marine Pollution Bulletin, 2018, 135: 808−818. doi: 10.1016/j.marpolbul.2018.08.014
    [17] Wu Junwen, Dai Minhan, Xu Yi, et al. Sources and accumulation of plutonium in a large Western Pacific marginal sea: the South China Sea[J]. Science of the Total Environment, 2018, 610−611: 200−211. doi: 10.1016/j.scitotenv.2017.07.226
    [18] 詹宪钰. 涠洲岛珊瑚骨骼中钚含量测定[D]. 南宁: 广西大学, 2019.

    Zhan Xianyu. Determination of Plutonium in coral skeleton near Weizhou island[D]. Nanning: Guangxi University, 2019.
    [19] Guan Yongjing, Mai Jingyu, Wang Huijuan, et al. Plutonium isotopes and radionuclides in corals around Weizhou land in Beibu Gulf, China[J]. Applied Radiation and Isotopes, 2021, 176: 109873. doi: 10.1016/j.apradiso.2021.109873
    [20] Dong Wei, Zheng Jian, Guo Qiuju, et al. Characterization of plutonium in deep-sea sediments of the Sulu and south China seas[J]. Journal of Environmental Radioactivity, 2010, 101(8): 622−629. doi: 10.1016/j.jenvrad.2010.03.011
    [21] Wu Junwen, Zheng Jian, Dai Minhan, et al. Isotopic composition and distribution of Plutonium in northern south China sea sediments revealed continuous release and transport of Pu from the Marshall islands[J]. Environmental Science & Technology, 2014, 48(6): 3136−3144.
    [22] Wang Ruirui, Fu Yao, Lei Ling, et al. Distribution and source identification of Pu in river basins in southern China[J]. ACS Omega, 2019, 4(27): 22646−22654. doi: 10.1021/acsomega.9b03650
    [23] Wang Ruirui, Lei Ling, Li Gang, et al. Identification of the distribution and sources of Pu in the northern south China sea: influences of provenance and scavenging[J]. ACS Earth and Space Chemistry, 2019, 3(12): 2684−2694. doi: 10.1021/acsearthspacechem.9b00245
    [24] Zhang Mengting, Qiao Jixin, Zhang Weichao, et al. Plutonium isotopes in the northwestern South China Sea: level, distribution, source and deposition[J]. Environmental Pollution, 2022, 298: 118846. doi: 10.1016/j.envpol.2022.118846
    [25] Guan Yongjing, He Hua, Fan Kaidi, et al. Spatial distribution, source identification, and transportation paths of plutonium in the Beibu Gulf, South China Sea[J]. Marine Pollution Bulletin, 2024, 199: 115972. doi: 10.1016/j.marpolbul.2023.115972
    [26] Wei Xiaomin, Zhang Ruihan, Zhu Jianjun, et al. Spatial distribution and modelling of 239+240Pu in the sediments and seawater columns of the South China Sea and Indian Ocean[J]. Environmental Pollution, 2024, 343: 123244. doi: 10.1016/j.envpol.2023.123244
    [27] 王深圳. 中国南海钚的分布及环境意义[D]. 南宁: 广西大学, 2023: 1−99.

    Wang Shenzhen. Plutonium distribution and environmental significance in the south China sea[D]. Nanjing: Guangxi University, 2023: 1−99.
    [28] Huang Yanan, Chamizo E, Tenorio R G, et al. Presence of 236U, 237Np and 239, 240Pu in shells from the coast of the south of China[J]. Journal of Environmental Radioactivity, 2024, 278: 107490. doi: 10.1016/j.jenvrad.2024.107490
    [29] Li Sixuan, Ni Youyi, Guo Qiuju. Plutonium in the coastal seawater around Chinese nuclear power plants: sources, distribution, and environmental implications[J]. Marine Pollution Bulletin, 2024, 207: 116882. doi: 10.1016/j.marpolbul.2024.116882
    [30] Buesseler K O. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36(1): 69−83. doi: 10.1016/S0265-931X(96)00071-9
    [31] Kelley J M, Bond L A, Beasley T M. Global distribution of Pu isotopes and 237Np[J]. Science of the Total Environment, 1999, 237-238: 483−500. doi: 10.1016/S0048-9697(99)00160-6
    [32] Lindahl P, Lee S H, Worsfold P, et al. Plutonium isotopes as tracers for ocean processes: a review[J]. Marine Environmental Research, 2010, 69(2): 73−84. doi: 10.1016/j.marenvres.2009.08.002
    [33] Lee S H, Gastaud J, Povinec P P, et al. Distribution of plutonium and americium in the marginal seas of the northwest Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17-21): 2727−2750. doi: 10.1016/S0967-0645(03)00150-4
    [34] Xie Tengxiang, Dai Minhan, Hamzah F, et al. Sources and transport of plutonium in the Indo-Pacific Intersection: implications for South China Sea freshwater transport into Indonesian Seas[J]. Chemical Geology, 2021, 580: 120367. doi: 10.1016/j.chemgeo.2021.120367
    [35] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估[J]. 地球科学进展, 2023, 38(3): 286−295. doi: 10.11867/j.issn.1001-8166.2022.082

    Lin Wuhui, Zhang Fan, Yu Kefu, et al. Assessment and enrichment of artificial radionuclides in coral reef ecosystems[J]. Advances in Earth Science, 2023, 38(3): 286−295. doi: 10.11867/j.issn.1001-8166.2022.082
    [36] Wong G T F, Ku T L, Mulholland M, et al. The South East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea-an overview[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1434−1447.
    [37] Yamada M, Zheng Jian. 239Pu and 240Pu inventories and 240Pu/239Pu atom ratios in the equatorial Pacific Ocean water column[J]. Science of the Total Environment, 2012, 430: 20−27. doi: 10.1016/j.scitotenv.2012.04.065
    [38] Yamada M, Zheng Jian. 240Pu/239Pu atom ratios in water columns from the North Pacific Ocean and Bering Sea: transport of Pacific Proving Grounds-derived Pu by ocean currents[J]. Science of the Total Environment, 2020, 718: 137362. doi: 10.1016/j.scitotenv.2020.137362
    [39] Yamada M, Zheng Jian. Distributions of 239Pu and 240Pu concentrations and 240Pu/239Pu atom ratios and 239+240Pu inventories in a water column in the eastern Indian Ocean: transport of Pacific proving grounds-derived Pu via the Indonesian throughflow[J]. Environmental Science & Technology, 2021, 55(20): 13849−13859.
    [40] 李学斌, 何胡晟, 彭安国, 等. 南沙海域沉积物239+240Pu和137Cs的分布特征及环境意义[J]. 环境化学, 2023, 42(12): 4229−4237. doi: 10.7524/j.issn.0254-6108.2022060202

    Li Xuebin, He Husheng, Peng Anguo, et al. Distribution characteristics and environmental significance of 239+240Pu and 137Cs in sediments in Nansha Sea area[J]. Environmental Chemistry, 2023, 42(12): 4229−4237. doi: 10.7524/j.issn.0254-6108.2022060202
    [41] Huang Yanan, Sun Xiaoming, Zhang Wei. Spatio-temporal distribution of 239+240Pu in sediments of the China sea and adjacent waters[J]. Journal of Environmental Radioactivity, 2022, 253−254: 107010. doi: 10.1016/j.jenvrad.2022.107010
    [42] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151−158.
    [43] 倪玉根, 李建国, 习龙. 海砂粒级划分标准和沉积物命名方法探讨[J]. 热带海洋学报, 2021, 40(3): 143−151. doi: 10.11978/2020062

    Ni Yugen, Li Jianguo, Xi Long. Discussion on grain-size grading scale and sediment classification for marine sand and gravel[J]. Journal of Tropical Oceanography, 2021, 40(3): 143−151. doi: 10.11978/2020062
    [44] 黄亚楠. 中国渤、黄海柱样中239+240Pu的分布与沉积通量[J]. 海洋环境科学, 2022, 41(5): 723−730.

    Huang Yanan. Vertical distributions and inventories of 239+240Pu in sediment cores of Bohai and Yellow Seas of China[J]. Marine Environmental Science, 2022, 41(5): 723−730.
    [45] 黄亚楠. 中国东部海域中239+240Pu的来源与沉积过程研究[J]. 海洋学报, 2022, 44(11): 77−87.

    Huang Yanan. Source and sedimentary process of 239+240Pu in the eastern China seas[J]. Haiyang Xuebao, 2022, 44(11): 77−87.
    [46] Liu Zhiyong, Zheng Jian, Pan Shaoming, et al. Pu and 137Cs in the Yangtze River Estuary sediments: distribution and source identification[J]. Environmental Science & Technology, 2011, 45(5): 1805−1811.
    [47] Zhang Rui, Wang Ruirui, Liu Zhiyong, et al. Distribution and transport of plutonium in the sediments of the Yangtze River estuary and the adjacent East China Sea[J]. Applied Geochemistry, 2020, 115: 104532. doi: 10.1016/j.apgeochem.2020.104532
    [48] Pan Shaoming, Tims S G, Liu X Y, et al. 137Cs, 239+240Pu concentrations and the 240Pu/239Pu atom ratio in a sediment core from the sub-aqueous delta of Yangtze River estuary[J]. Journal of Environmental Radioactivity, 2011, 102(10): 930−936.
    [49] Wang Jinlong, Baskaran M, Hou Xiaolin, et al. Historical changes in 239Pu and 240Pu sources in sedimentary records in the East China Sea: implications for provenance and transportation[J]. Earth and Planetary Science Letters, 2017, 466: 32−42. doi: 10.1016/j.jpgl.2017.03.005
    [50] Wang Zhongliang, Yamada M. Plutonium activities and 240Pu/239Pu atom ratios in sediment cores from the East China Sea and Okinawa Trough: sources and inventories[J]. Earth and Planetary Science Letters, 2005, 233(3/4): 441−453.
    [51] Wang Jinlong, Du Jinzhou, Zheng Jian, et al. Plutonium in Southern Yellow Sea sediments and its implications for the quantification of oceanic-derived mercury and zinc[J]. Environmental Pollution, 2020, 266: 115262. doi: 10.1016/j.envpol.2020.115262
    [52] Sun Jiang, Zhu Shaodong, Xing Shan, et al. Level, distribution and sources of Np, Pu and Am isotopes in Peter the Great Bay of Japan sea[J]. Journal of Environmental Radioactivity, 2024, 274: 107400. doi: 10.1016/j.jenvrad.2024.107400
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  24
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-11-01
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回